Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120672661> ?p ?o ?g. }
- W3120672661 endingPage "23" @default.
- W3120672661 startingPage "23" @default.
- W3120672661 abstract "Cities are responsible for a large share of the global energy consumption. A third of the total greenhouse gas emissions are related to the buildings sector, making it an important target for reducing urban energy consumption. Detailed data on the building stock, including the thermal characteristics of individual buildings, such as the construction type, construction period, and building geometries, can strongly support decision-making for local authorities to help them spatially localize buildings with high potential for thermal renovations. In this paper, we present a workflow for deep learning-based building stock modeling using aerial images at a city scale for heat demand modeling. The extracted buildings are used for bottom-up modeling of the residential building heat demand based on construction type and construction period. The results for DL-building extraction exhibit F1-accuracies of 87%, and construction types yield an overall accuracy of 96%. The modeled heat demands display a high level of agreement of R2 0.82 compared with reference data. Finally, we analyze various refurbishment scenarios for construction periods and construction types, e.g., revealing that the targeted thermal renovation of multi-family houses constructed between the 1950s and 1970s accounts for about 47% of the total heat demand in a realistic refurbishment scenario." @default.
- W3120672661 created "2021-01-18" @default.
- W3120672661 creator A5000132222 @default.
- W3120672661 creator A5010647855 @default.
- W3120672661 creator A5019520142 @default.
- W3120672661 creator A5046449632 @default.
- W3120672661 creator A5050269298 @default.
- W3120672661 creator A5050422212 @default.
- W3120672661 date "2021-01-12" @default.
- W3120672661 modified "2023-10-09" @default.
- W3120672661 title "Deep Learning-Based Generation of Building Stock Data from Remote Sensing for Urban Heat Demand Modeling" @default.
- W3120672661 cites W142267735 @default.
- W3120672661 cites W1461568531 @default.
- W3120672661 cites W1559311850 @default.
- W3120672661 cites W1966335944 @default.
- W3120672661 cites W1996542876 @default.
- W3120672661 cites W2012838735 @default.
- W3120672661 cites W2013486252 @default.
- W3120672661 cites W2021080146 @default.
- W3120672661 cites W2026723939 @default.
- W3120672661 cites W2031753400 @default.
- W3120672661 cites W2044969722 @default.
- W3120672661 cites W2058152242 @default.
- W3120672661 cites W2073936917 @default.
- W3120672661 cites W2142453803 @default.
- W3120672661 cites W2183740711 @default.
- W3120672661 cites W2194582121 @default.
- W3120672661 cites W2307620174 @default.
- W3120672661 cites W2460612167 @default.
- W3120672661 cites W2464717066 @default.
- W3120672661 cites W2515244244 @default.
- W3120672661 cites W2578122713 @default.
- W3120672661 cites W2612214218 @default.
- W3120672661 cites W2620689612 @default.
- W3120672661 cites W2744997995 @default.
- W3120672661 cites W2768636870 @default.
- W3120672661 cites W2782522152 @default.
- W3120672661 cites W2790741584 @default.
- W3120672661 cites W2793251141 @default.
- W3120672661 cites W2891595475 @default.
- W3120672661 cites W2901180485 @default.
- W3120672661 cites W2901570812 @default.
- W3120672661 cites W2911964244 @default.
- W3120672661 cites W2915971115 @default.
- W3120672661 cites W2919115771 @default.
- W3120672661 cites W2924260171 @default.
- W3120672661 cites W2931134809 @default.
- W3120672661 cites W2963659230 @default.
- W3120672661 cites W2966450079 @default.
- W3120672661 cites W2969550392 @default.
- W3120672661 cites W2980696542 @default.
- W3120672661 cites W2982691905 @default.
- W3120672661 cites W2996140815 @default.
- W3120672661 cites W3024252046 @default.
- W3120672661 doi "https://doi.org/10.3390/ijgi10010023" @default.
- W3120672661 hasPublicationYear "2021" @default.
- W3120672661 type Work @default.
- W3120672661 sameAs 3120672661 @default.
- W3120672661 citedByCount "22" @default.
- W3120672661 countsByYear W31206726612021 @default.
- W3120672661 countsByYear W31206726612022 @default.
- W3120672661 countsByYear W31206726612023 @default.
- W3120672661 crossrefType "journal-article" @default.
- W3120672661 hasAuthorship W3120672661A5000132222 @default.
- W3120672661 hasAuthorship W3120672661A5010647855 @default.
- W3120672661 hasAuthorship W3120672661A5019520142 @default.
- W3120672661 hasAuthorship W3120672661A5046449632 @default.
- W3120672661 hasAuthorship W3120672661A5050269298 @default.
- W3120672661 hasAuthorship W3120672661A5050422212 @default.
- W3120672661 hasBestOaLocation W31206726611 @default.
- W3120672661 hasConcept C107706546 @default.
- W3120672661 hasConcept C111368507 @default.
- W3120672661 hasConcept C119599485 @default.
- W3120672661 hasConcept C127313418 @default.
- W3120672661 hasConcept C127413603 @default.
- W3120672661 hasConcept C147176958 @default.
- W3120672661 hasConcept C170154142 @default.
- W3120672661 hasConcept C177212765 @default.
- W3120672661 hasConcept C204036174 @default.
- W3120672661 hasConcept C2776461528 @default.
- W3120672661 hasConcept C2778530916 @default.
- W3120672661 hasConcept C2780165032 @default.
- W3120672661 hasConcept C2780331096 @default.
- W3120672661 hasConcept C39432304 @default.
- W3120672661 hasConcept C41008148 @default.
- W3120672661 hasConcept C44154836 @default.
- W3120672661 hasConcept C47737302 @default.
- W3120672661 hasConcept C77088390 @default.
- W3120672661 hasConcept C78519656 @default.
- W3120672661 hasConceptScore W3120672661C107706546 @default.
- W3120672661 hasConceptScore W3120672661C111368507 @default.
- W3120672661 hasConceptScore W3120672661C119599485 @default.
- W3120672661 hasConceptScore W3120672661C127313418 @default.
- W3120672661 hasConceptScore W3120672661C127413603 @default.
- W3120672661 hasConceptScore W3120672661C147176958 @default.
- W3120672661 hasConceptScore W3120672661C170154142 @default.
- W3120672661 hasConceptScore W3120672661C177212765 @default.
- W3120672661 hasConceptScore W3120672661C204036174 @default.