Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120756039> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3120756039 abstract "In recent years, the use of machine learning techniques as surrogate models for computational fluid dynamics (CFD) simulations has emerged as a promising method for reducing the computational cost associated with engine design optimization. However, such methods still suffer from drawbacks. One main disadvantage of such methods is that the default machine learning hyperparameters are often severely suboptimal for a given problem. This has often been addressed by manually trying out different hyperparameter settings, but this solution is ineffective in a high-dimensional hyperparameter space. Besides this problem, the amount of data needed for training is also not known a priori. In response to these issues which need to be addressed, this work describes and validates an automated active learning approach for surrogate-based optimization of internal combustion engines, AutoML-GA. In this approach, a Bayesian optimization technique is used to find the best machine learning hyperparameters based on an initial dataset obtained from a small number of CFD simulations. Subsequently, a genetic algorithm is employed to locate the design optimum on the surrogate surface trained with the optimal hyperparameters. In the vicinity of the design optimum, the solution is refined by repeatedly running CFD simulations at the projected optimum and adding the newly obtained data to the training dataset. It is shown that this approach leads to a better optimum with a lower number of CFD simulations, compared to the use of default hyperparameters. The developed approach offers the advantage of being a more hands-off approach that can be easily applied by researchers and engineers in industry who do not have a machine learning background." @default.
- W3120756039 created "2021-01-18" @default.
- W3120756039 creator A5017782131 @default.
- W3120756039 creator A5018396603 @default.
- W3120756039 creator A5037919862 @default.
- W3120756039 creator A5046410250 @default.
- W3120756039 creator A5071693665 @default.
- W3120756039 creator A5056452240 @default.
- W3120756039 creator A5059798180 @default.
- W3120756039 date "2021-01-07" @default.
- W3120756039 modified "2023-09-25" @default.
- W3120756039 title "An automated machine learning-genetic algorithm (AutoML-GA) approach for efficient simulation-driven engine design optimization." @default.
- W3120756039 cites W1522513635 @default.
- W3120756039 cites W1979328769 @default.
- W3120756039 cites W2027874434 @default.
- W3120756039 cites W2031874479 @default.
- W3120756039 cites W2101234009 @default.
- W3120756039 cites W2324986918 @default.
- W3120756039 cites W2591002541 @default.
- W3120756039 cites W2795778498 @default.
- W3120756039 cites W2795990911 @default.
- W3120756039 cites W2802442158 @default.
- W3120756039 cites W2899322822 @default.
- W3120756039 cites W2899952556 @default.
- W3120756039 cites W2934868860 @default.
- W3120756039 cites W2990990121 @default.
- W3120756039 cites W2996143456 @default.
- W3120756039 cites W3011697175 @default.
- W3120756039 cites W3102476541 @default.
- W3120756039 cites W3110511296 @default.
- W3120756039 cites W3121020753 @default.
- W3120756039 cites W3136168831 @default.
- W3120756039 cites W3210311544 @default.
- W3120756039 hasPublicationYear "2021" @default.
- W3120756039 type Work @default.
- W3120756039 sameAs 3120756039 @default.
- W3120756039 citedByCount "0" @default.
- W3120756039 crossrefType "posted-content" @default.
- W3120756039 hasAuthorship W3120756039A5017782131 @default.
- W3120756039 hasAuthorship W3120756039A5018396603 @default.
- W3120756039 hasAuthorship W3120756039A5037919862 @default.
- W3120756039 hasAuthorship W3120756039A5046410250 @default.
- W3120756039 hasAuthorship W3120756039A5056452240 @default.
- W3120756039 hasAuthorship W3120756039A5059798180 @default.
- W3120756039 hasAuthorship W3120756039A5071693665 @default.
- W3120756039 hasConcept C111472728 @default.
- W3120756039 hasConcept C11413529 @default.
- W3120756039 hasConcept C119857082 @default.
- W3120756039 hasConcept C127413603 @default.
- W3120756039 hasConcept C131675550 @default.
- W3120756039 hasConcept C138885662 @default.
- W3120756039 hasConcept C146978453 @default.
- W3120756039 hasConcept C154945302 @default.
- W3120756039 hasConcept C1633027 @default.
- W3120756039 hasConcept C2778049539 @default.
- W3120756039 hasConcept C41008148 @default.
- W3120756039 hasConcept C75553542 @default.
- W3120756039 hasConcept C8642999 @default.
- W3120756039 hasConcept C8880873 @default.
- W3120756039 hasConceptScore W3120756039C111472728 @default.
- W3120756039 hasConceptScore W3120756039C11413529 @default.
- W3120756039 hasConceptScore W3120756039C119857082 @default.
- W3120756039 hasConceptScore W3120756039C127413603 @default.
- W3120756039 hasConceptScore W3120756039C131675550 @default.
- W3120756039 hasConceptScore W3120756039C138885662 @default.
- W3120756039 hasConceptScore W3120756039C146978453 @default.
- W3120756039 hasConceptScore W3120756039C154945302 @default.
- W3120756039 hasConceptScore W3120756039C1633027 @default.
- W3120756039 hasConceptScore W3120756039C2778049539 @default.
- W3120756039 hasConceptScore W3120756039C41008148 @default.
- W3120756039 hasConceptScore W3120756039C75553542 @default.
- W3120756039 hasConceptScore W3120756039C8642999 @default.
- W3120756039 hasConceptScore W3120756039C8880873 @default.
- W3120756039 hasLocation W31207560391 @default.
- W3120756039 hasOpenAccess W3120756039 @default.
- W3120756039 hasPrimaryLocation W31207560391 @default.
- W3120756039 hasRelatedWork W2113284523 @default.
- W3120756039 hasRelatedWork W2205335053 @default.
- W3120756039 hasRelatedWork W2296059279 @default.
- W3120756039 hasRelatedWork W2775233965 @default.
- W3120756039 hasRelatedWork W2804535652 @default.
- W3120756039 hasRelatedWork W2899462220 @default.
- W3120756039 hasRelatedWork W2950330175 @default.
- W3120756039 hasRelatedWork W2989099446 @default.
- W3120756039 hasRelatedWork W3006105210 @default.
- W3120756039 hasRelatedWork W3012926379 @default.
- W3120756039 hasRelatedWork W3014057631 @default.
- W3120756039 hasRelatedWork W3016539020 @default.
- W3120756039 hasRelatedWork W3029879778 @default.
- W3120756039 hasRelatedWork W3035825996 @default.
- W3120756039 hasRelatedWork W3040899439 @default.
- W3120756039 hasRelatedWork W3043378470 @default.
- W3120756039 hasRelatedWork W3103370507 @default.
- W3120756039 hasRelatedWork W3129764450 @default.
- W3120756039 hasRelatedWork W3201060374 @default.
- W3120756039 hasRelatedWork W3204460923 @default.
- W3120756039 isParatext "false" @default.
- W3120756039 isRetracted "false" @default.
- W3120756039 magId "3120756039" @default.
- W3120756039 workType "article" @default.