Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120803771> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3120803771 endingPage "429" @default.
- W3120803771 startingPage "426" @default.
- W3120803771 abstract "Eye state ID is a sort of basic time-arrangement grouping issue in which it is additionally a problem area in the late exploration. Electroencephalography (EEG) is broadly utilized in a vision state in order to recognize people perception form. Past examination was approved possibility of AI & measurable methodologies of EEG vision state arrangement. This research means to propose novel methodology for EEG vision state distinguishing proof utilizing Gradual Characteristic Learning (GCL) in light of neural organizations. GCL is a novel AI methodology which bit by bit imports and prepares includes individually. Past examinations have confirmed that such a methodology is appropriate for settling various example acknowledgment issues. Nonetheless, in these past works, little examination on GCL zeroed in its application to temporal-arrangement issues. Thusly, it is as yet unclear if GCL will be utilized for adapting the temporal-arrangement issues like EEG vision state characterization. Trial brings about this examination shows that, with appropriate element extraction and highlight requesting, GCL cannot just productively adapt to time-arrangement order issues, yet additionally display better grouping execution as far as characterization mistake rates in correlation with ordinary and some different methodologies. Vision state classification is performed and discussed with KNN classification and accuracy is enriched finally discussed the vision state classification with ensemble machine learning model." @default.
- W3120803771 created "2021-01-18" @default.
- W3120803771 creator A5032569869 @default.
- W3120803771 creator A5035212618 @default.
- W3120803771 creator A5060654627 @default.
- W3120803771 date "2020-12-30" @default.
- W3120803771 modified "2023-09-27" @default.
- W3120803771 title "A Survey on Machine Learning Algorithms for Vision State Classification and Prediction Through Electroencephalogram (EEG) Signal" @default.
- W3120803771 cites W1489385787 @default.
- W3120803771 cites W1507480455 @default.
- W3120803771 cites W1603997747 @default.
- W3120803771 cites W2000923966 @default.
- W3120803771 cites W2009603406 @default.
- W3120803771 cites W2021970732 @default.
- W3120803771 cites W2032156141 @default.
- W3120803771 cites W2067611782 @default.
- W3120803771 cites W2074929544 @default.
- W3120803771 cites W2077563416 @default.
- W3120803771 cites W2080201073 @default.
- W3120803771 cites W2133990480 @default.
- W3120803771 cites W2142885311 @default.
- W3120803771 cites W2148511931 @default.
- W3120803771 cites W2275872198 @default.
- W3120803771 cites W2586234056 @default.
- W3120803771 cites W2890974542 @default.
- W3120803771 cites W3080817161 @default.
- W3120803771 cites W34439520 @default.
- W3120803771 cites W35354330 @default.
- W3120803771 cites W4240837725 @default.
- W3120803771 cites W2010734908 @default.
- W3120803771 doi "https://doi.org/10.46532/978-81-950008-1-4_093" @default.
- W3120803771 hasPublicationYear "2020" @default.
- W3120803771 type Work @default.
- W3120803771 sameAs 3120803771 @default.
- W3120803771 citedByCount "0" @default.
- W3120803771 crossrefType "journal-article" @default.
- W3120803771 hasAuthorship W3120803771A5032569869 @default.
- W3120803771 hasAuthorship W3120803771A5035212618 @default.
- W3120803771 hasAuthorship W3120803771A5060654627 @default.
- W3120803771 hasConcept C11413529 @default.
- W3120803771 hasConcept C118552586 @default.
- W3120803771 hasConcept C119857082 @default.
- W3120803771 hasConcept C153180895 @default.
- W3120803771 hasConcept C154945302 @default.
- W3120803771 hasConcept C15744967 @default.
- W3120803771 hasConcept C169760540 @default.
- W3120803771 hasConcept C26760741 @default.
- W3120803771 hasConcept C41008148 @default.
- W3120803771 hasConcept C48103436 @default.
- W3120803771 hasConcept C522805319 @default.
- W3120803771 hasConceptScore W3120803771C11413529 @default.
- W3120803771 hasConceptScore W3120803771C118552586 @default.
- W3120803771 hasConceptScore W3120803771C119857082 @default.
- W3120803771 hasConceptScore W3120803771C153180895 @default.
- W3120803771 hasConceptScore W3120803771C154945302 @default.
- W3120803771 hasConceptScore W3120803771C15744967 @default.
- W3120803771 hasConceptScore W3120803771C169760540 @default.
- W3120803771 hasConceptScore W3120803771C26760741 @default.
- W3120803771 hasConceptScore W3120803771C41008148 @default.
- W3120803771 hasConceptScore W3120803771C48103436 @default.
- W3120803771 hasConceptScore W3120803771C522805319 @default.
- W3120803771 hasLocation W31208037711 @default.
- W3120803771 hasOpenAccess W3120803771 @default.
- W3120803771 hasPrimaryLocation W31208037711 @default.
- W3120803771 hasRelatedWork W2961085424 @default.
- W3120803771 hasRelatedWork W3046775127 @default.
- W3120803771 hasRelatedWork W3107474891 @default.
- W3120803771 hasRelatedWork W4205958290 @default.
- W3120803771 hasRelatedWork W4285260836 @default.
- W3120803771 hasRelatedWork W4286629047 @default.
- W3120803771 hasRelatedWork W4306321456 @default.
- W3120803771 hasRelatedWork W4306674287 @default.
- W3120803771 hasRelatedWork W4313203779 @default.
- W3120803771 hasRelatedWork W4224009465 @default.
- W3120803771 isParatext "false" @default.
- W3120803771 isRetracted "false" @default.
- W3120803771 magId "3120803771" @default.
- W3120803771 workType "article" @default.