Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120823897> ?p ?o ?g. }
- W3120823897 endingPage "433" @default.
- W3120823897 startingPage "422" @default.
- W3120823897 abstract "Bayesian hierarchical models have been increasingly used in regional flood frequency analysis due to their flexibility and ability to accommodate the spatial variability of flooding processes in distribution parameters. Hierarchical models based on the generalized extreme value (GEV) distribution are useful since they may combine scaling properties and distinct degrees of pooling in the shape parameter for improving quantile estimation. In this paper, we evaluate the benefits of combining a partial pooling approach and a formal description of the spatial latent processes that govern the distribution parameters. The application of the model in the Alto do São Francisco River catchment (Brazil) suggests that, despite obtaining similar estimates at gauged sites, prediction at ungauged counterparts may be substantially improved in densely gauged regions, in terms of accuracy and precision, by accounting for spatial dependency. In poorly gauged areas, however, no benefits in utilizing latent spatial processes for inference were verified." @default.
- W3120823897 created "2021-01-18" @default.
- W3120823897 creator A5027816962 @default.
- W3120823897 creator A5055101977 @default.
- W3120823897 date "2021-02-02" @default.
- W3120823897 modified "2023-10-10" @default.
- W3120823897 title "Bayesian regional flood frequency analysis with GEV hierarchical models under spatial dependency structures" @default.
- W3120823897 cites W1500657154 @default.
- W3120823897 cites W1505492480 @default.
- W3120823897 cites W1570189878 @default.
- W3120823897 cites W1586313814 @default.
- W3120823897 cites W1739078520 @default.
- W3120823897 cites W1840190268 @default.
- W3120823897 cites W1910001329 @default.
- W3120823897 cites W1976650623 @default.
- W3120823897 cites W1986980105 @default.
- W3120823897 cites W1997146567 @default.
- W3120823897 cites W2009503181 @default.
- W3120823897 cites W2013333910 @default.
- W3120823897 cites W2016405631 @default.
- W3120823897 cites W2020324376 @default.
- W3120823897 cites W2023412732 @default.
- W3120823897 cites W2025125406 @default.
- W3120823897 cites W2028704778 @default.
- W3120823897 cites W2032534395 @default.
- W3120823897 cites W2037797393 @default.
- W3120823897 cites W2056199992 @default.
- W3120823897 cites W2061332307 @default.
- W3120823897 cites W2068634333 @default.
- W3120823897 cites W2071769383 @default.
- W3120823897 cites W2072555703 @default.
- W3120823897 cites W2073685234 @default.
- W3120823897 cites W2074519092 @default.
- W3120823897 cites W2074786060 @default.
- W3120823897 cites W2082169292 @default.
- W3120823897 cites W2087406343 @default.
- W3120823897 cites W2129540265 @default.
- W3120823897 cites W2129583284 @default.
- W3120823897 cites W2139224138 @default.
- W3120823897 cites W2158687258 @default.
- W3120823897 cites W2162236467 @default.
- W3120823897 cites W2166366371 @default.
- W3120823897 cites W2202168668 @default.
- W3120823897 cites W2214181032 @default.
- W3120823897 cites W2282810274 @default.
- W3120823897 cites W2378184816 @default.
- W3120823897 cites W2474071962 @default.
- W3120823897 cites W2475727137 @default.
- W3120823897 cites W2539891982 @default.
- W3120823897 cites W2560603346 @default.
- W3120823897 cites W2565191053 @default.
- W3120823897 cites W2626753065 @default.
- W3120823897 cites W2753841297 @default.
- W3120823897 cites W2784794634 @default.
- W3120823897 cites W2788774560 @default.
- W3120823897 cites W2885971541 @default.
- W3120823897 cites W2951868656 @default.
- W3120823897 cites W2970168603 @default.
- W3120823897 cites W2984555991 @default.
- W3120823897 cites W2994031064 @default.
- W3120823897 cites W3008697152 @default.
- W3120823897 cites W3020381287 @default.
- W3120823897 cites W3101886251 @default.
- W3120823897 cites W3124596348 @default.
- W3120823897 doi "https://doi.org/10.1080/02626667.2021.1873997" @default.
- W3120823897 hasPublicationYear "2021" @default.
- W3120823897 type Work @default.
- W3120823897 sameAs 3120823897 @default.
- W3120823897 citedByCount "5" @default.
- W3120823897 countsByYear W31208238972021 @default.
- W3120823897 countsByYear W31208238972022 @default.
- W3120823897 countsByYear W31208238972023 @default.
- W3120823897 crossrefType "journal-article" @default.
- W3120823897 hasAuthorship W3120823897A5027816962 @default.
- W3120823897 hasAuthorship W3120823897A5055101977 @default.
- W3120823897 hasConcept C105795698 @default.
- W3120823897 hasConcept C107673813 @default.
- W3120823897 hasConcept C111350023 @default.
- W3120823897 hasConcept C118671147 @default.
- W3120823897 hasConcept C138695830 @default.
- W3120823897 hasConcept C147581598 @default.
- W3120823897 hasConcept C149782125 @default.
- W3120823897 hasConcept C154945302 @default.
- W3120823897 hasConcept C160234255 @default.
- W3120823897 hasConcept C166957645 @default.
- W3120823897 hasConcept C169707849 @default.
- W3120823897 hasConcept C191413810 @default.
- W3120823897 hasConcept C205649164 @default.
- W3120823897 hasConcept C2776214188 @default.
- W3120823897 hasConcept C33923547 @default.
- W3120823897 hasConcept C41008148 @default.
- W3120823897 hasConcept C70437156 @default.
- W3120823897 hasConcept C74256435 @default.
- W3120823897 hasConceptScore W3120823897C105795698 @default.
- W3120823897 hasConceptScore W3120823897C107673813 @default.
- W3120823897 hasConceptScore W3120823897C111350023 @default.
- W3120823897 hasConceptScore W3120823897C118671147 @default.
- W3120823897 hasConceptScore W3120823897C138695830 @default.