Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120881664> ?p ?o ?g. }
- W3120881664 endingPage "36" @default.
- W3120881664 startingPage "25" @default.
- W3120881664 abstract "Clipping is a common type of distortion in which the amplitude of a signal is truncated if it exceeds a certain threshold. Sparse representation has underpinned several algorithms developed recently for reconstruction of the original signal from clipped observations. However, these declipping algorithms are often built on a synthesis model, where the signal is represented by a dictionary weighted by sparse coding coefficients. In contrast to these works, we propose a sparse analysis-model-based declipping (SAD) method, where the declipping model is formulated on an analysis (i.e. transform) dictionary, and additional constraints characterizing the clipping process. The analysis dictionary is updated using the Analysis SimCO algorithm, and the signal is recovered by using a least-squares based method or a projected gradient descent method, incorporating the observable signal set. Numerical experiments on speech and music are used to demonstrate improved performance in signal to distortion ratio (SDR) compared to recent state-of-the-art methods including A-SPADE and ConsDL." @default.
- W3120881664 created "2021-01-18" @default.
- W3120881664 creator A5012450580 @default.
- W3120881664 creator A5028913875 @default.
- W3120881664 creator A5037691180 @default.
- W3120881664 creator A5066967599 @default.
- W3120881664 creator A5079362043 @default.
- W3120881664 creator A5084833074 @default.
- W3120881664 date "2021-01-01" @default.
- W3120881664 modified "2023-09-23" @default.
- W3120881664 title "Sparse Analysis Model Based Dictionary Learning for Signal Declipping" @default.
- W3120881664 cites W1946620893 @default.
- W3120881664 cites W1976709621 @default.
- W3120881664 cites W1980454827 @default.
- W3120881664 cites W1994281301 @default.
- W3120881664 cites W2006772625 @default.
- W3120881664 cites W2008644337 @default.
- W3120881664 cites W2025948329 @default.
- W3120881664 cites W2029362727 @default.
- W3120881664 cites W2045328647 @default.
- W3120881664 cites W2058532290 @default.
- W3120881664 cites W2078204800 @default.
- W3120881664 cites W2097479740 @default.
- W3120881664 cites W2100705753 @default.
- W3120881664 cites W2102521116 @default.
- W3120881664 cites W2107844156 @default.
- W3120881664 cites W2112390905 @default.
- W3120881664 cites W2120047933 @default.
- W3120881664 cites W2141039087 @default.
- W3120881664 cites W2153663612 @default.
- W3120881664 cites W2154332973 @default.
- W3120881664 cites W2160547390 @default.
- W3120881664 cites W2163312093 @default.
- W3120881664 cites W2163844768 @default.
- W3120881664 cites W2171004446 @default.
- W3120881664 cites W2172909489 @default.
- W3120881664 cites W2191962456 @default.
- W3120881664 cites W2222562092 @default.
- W3120881664 cites W2296153915 @default.
- W3120881664 cites W2404728592 @default.
- W3120881664 cites W2564523156 @default.
- W3120881664 cites W2584526915 @default.
- W3120881664 cites W2785524759 @default.
- W3120881664 cites W2786105342 @default.
- W3120881664 cites W2789622429 @default.
- W3120881664 cites W2884436603 @default.
- W3120881664 cites W2916985722 @default.
- W3120881664 cites W2947492498 @default.
- W3120881664 cites W2972666141 @default.
- W3120881664 cites W3099751318 @default.
- W3120881664 cites W3100455090 @default.
- W3120881664 cites W3135475824 @default.
- W3120881664 cites W4244393449 @default.
- W3120881664 cites W4292363360 @default.
- W3120881664 doi "https://doi.org/10.1109/jstsp.2021.3051746" @default.
- W3120881664 hasPublicationYear "2021" @default.
- W3120881664 type Work @default.
- W3120881664 sameAs 3120881664 @default.
- W3120881664 citedByCount "6" @default.
- W3120881664 countsByYear W31208816642021 @default.
- W3120881664 countsByYear W31208816642022 @default.
- W3120881664 countsByYear W31208816642023 @default.
- W3120881664 crossrefType "journal-article" @default.
- W3120881664 hasAuthorship W3120881664A5012450580 @default.
- W3120881664 hasAuthorship W3120881664A5028913875 @default.
- W3120881664 hasAuthorship W3120881664A5037691180 @default.
- W3120881664 hasAuthorship W3120881664A5066967599 @default.
- W3120881664 hasAuthorship W3120881664A5079362043 @default.
- W3120881664 hasAuthorship W3120881664A5084833074 @default.
- W3120881664 hasBestOaLocation W31208816642 @default.
- W3120881664 hasConcept C104267543 @default.
- W3120881664 hasConcept C11413529 @default.
- W3120881664 hasConcept C124066611 @default.
- W3120881664 hasConcept C126780896 @default.
- W3120881664 hasConcept C138885662 @default.
- W3120881664 hasConcept C153180895 @default.
- W3120881664 hasConcept C154945302 @default.
- W3120881664 hasConcept C194257627 @default.
- W3120881664 hasConcept C199360897 @default.
- W3120881664 hasConcept C2776257435 @default.
- W3120881664 hasConcept C2776848632 @default.
- W3120881664 hasConcept C2779843651 @default.
- W3120881664 hasConcept C31258907 @default.
- W3120881664 hasConcept C41008148 @default.
- W3120881664 hasConcept C41895202 @default.
- W3120881664 hasConcept C554190296 @default.
- W3120881664 hasConcept C70958404 @default.
- W3120881664 hasConcept C76155785 @default.
- W3120881664 hasConcept C77637269 @default.
- W3120881664 hasConceptScore W3120881664C104267543 @default.
- W3120881664 hasConceptScore W3120881664C11413529 @default.
- W3120881664 hasConceptScore W3120881664C124066611 @default.
- W3120881664 hasConceptScore W3120881664C126780896 @default.
- W3120881664 hasConceptScore W3120881664C138885662 @default.
- W3120881664 hasConceptScore W3120881664C153180895 @default.
- W3120881664 hasConceptScore W3120881664C154945302 @default.
- W3120881664 hasConceptScore W3120881664C194257627 @default.
- W3120881664 hasConceptScore W3120881664C199360897 @default.