Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120945293> ?p ?o ?g. }
- W3120945293 abstract "Drug-induced liver injury (DILI) is an adverse reaction caused by the intake of drugs of common use that produces liver damage. The impact of DILI is estimated to affect around 20 in 100,000 inhabitants worldwide each year. Despite being one of the main causes of liver failure, the pathophysiology and mechanisms of DILI are poorly understood. In the present study, we developed an ensemble learning approach based on different features (CMap gene expression, chemical structures, drug targets) to predict drugs that might cause DILI and gain a better understanding of the mechanisms linked to the adverse reaction.We searched for gene signatures in CMap gene expression data by using two approaches: phenotype-gene associations data from DisGeNET, and a non-parametric test comparing gene expression of DILI-Concern and No-DILI-Concern drugs (as per DILIrank definitions). The average accuracy of the classifiers in both approaches was 69%. We used chemical structures as features, obtaining an accuracy of 65%. The combination of both types of features produced an accuracy around 63%, but improved the independent hold-out test up to 67%. The use of drug-target associations as feature obtained the best accuracy (70%) in the independent hold-out test.When using CMap gene expression data, searching for a specific gene signature among the landmark genes improves the quality of the classifiers, but it is still limited by the intrinsic noise of the dataset. When using chemical structures as a feature, the structural diversity of the known DILI-causing drugs hampers the prediction, which is a similar problem as for the use of gene expression information. The combination of both features did not improve the quality of the classifiers but increased the robustness as shown on independent hold-out tests. The use of drug-target associations as feature improved the prediction, specially the specificity, and the results were comparable to previous research studies." @default.
- W3120945293 created "2021-01-18" @default.
- W3120945293 creator A5001918915 @default.
- W3120945293 creator A5004790453 @default.
- W3120945293 creator A5005406523 @default.
- W3120945293 creator A5020663739 @default.
- W3120945293 creator A5023067353 @default.
- W3120945293 creator A5028427590 @default.
- W3120945293 creator A5037018875 @default.
- W3120945293 creator A5054199754 @default.
- W3120945293 creator A5056335906 @default.
- W3120945293 creator A5090989775 @default.
- W3120945293 date "2021-01-12" @default.
- W3120945293 modified "2023-10-15" @default.
- W3120945293 title "An ensemble learning approach for modeling the systems biology of drug-induced injury" @default.
- W3120945293 cites W1644197353 @default.
- W3120945293 cites W1831050183 @default.
- W3120945293 cites W1895993106 @default.
- W3120945293 cites W1997362383 @default.
- W3120945293 cites W2008743918 @default.
- W3120945293 cites W2056782561 @default.
- W3120945293 cites W2061207817 @default.
- W3120945293 cites W2080240378 @default.
- W3120945293 cites W2083045667 @default.
- W3120945293 cites W2100499492 @default.
- W3120945293 cites W2108452336 @default.
- W3120945293 cites W2108933868 @default.
- W3120945293 cites W2121604817 @default.
- W3120945293 cites W2160699408 @default.
- W3120945293 cites W2162011385 @default.
- W3120945293 cites W2289901683 @default.
- W3120945293 cites W2519801594 @default.
- W3120945293 cites W2537679995 @default.
- W3120945293 cites W2540833383 @default.
- W3120945293 cites W2577502906 @default.
- W3120945293 cites W2592407379 @default.
- W3120945293 cites W2599336749 @default.
- W3120945293 cites W2612467560 @default.
- W3120945293 cites W2627654851 @default.
- W3120945293 cites W2771073546 @default.
- W3120945293 cites W2790505160 @default.
- W3120945293 cites W2804256492 @default.
- W3120945293 cites W2889451214 @default.
- W3120945293 cites W2914415092 @default.
- W3120945293 cites W2916047525 @default.
- W3120945293 cites W2921141022 @default.
- W3120945293 cites W2937307539 @default.
- W3120945293 cites W2944186015 @default.
- W3120945293 cites W2949492942 @default.
- W3120945293 cites W2950753203 @default.
- W3120945293 cites W2951449549 @default.
- W3120945293 cites W2987481746 @default.
- W3120945293 cites W3005466311 @default.
- W3120945293 cites W3005925936 @default.
- W3120945293 cites W3025733956 @default.
- W3120945293 cites W3136918052 @default.
- W3120945293 doi "https://doi.org/10.1186/s13062-020-00288-x" @default.
- W3120945293 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7805064" @default.
- W3120945293 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33435983" @default.
- W3120945293 hasPublicationYear "2021" @default.
- W3120945293 type Work @default.
- W3120945293 sameAs 3120945293 @default.
- W3120945293 citedByCount "10" @default.
- W3120945293 countsByYear W31209452932021 @default.
- W3120945293 countsByYear W31209452932022 @default.
- W3120945293 countsByYear W31209452932023 @default.
- W3120945293 crossrefType "journal-article" @default.
- W3120945293 hasAuthorship W3120945293A5001918915 @default.
- W3120945293 hasAuthorship W3120945293A5004790453 @default.
- W3120945293 hasAuthorship W3120945293A5005406523 @default.
- W3120945293 hasAuthorship W3120945293A5020663739 @default.
- W3120945293 hasAuthorship W3120945293A5023067353 @default.
- W3120945293 hasAuthorship W3120945293A5028427590 @default.
- W3120945293 hasAuthorship W3120945293A5037018875 @default.
- W3120945293 hasAuthorship W3120945293A5054199754 @default.
- W3120945293 hasAuthorship W3120945293A5056335906 @default.
- W3120945293 hasAuthorship W3120945293A5090989775 @default.
- W3120945293 hasBestOaLocation W31209452931 @default.
- W3120945293 hasConcept C104317684 @default.
- W3120945293 hasConcept C105795698 @default.
- W3120945293 hasConcept C117251300 @default.
- W3120945293 hasConcept C119857082 @default.
- W3120945293 hasConcept C127716648 @default.
- W3120945293 hasConcept C150194340 @default.
- W3120945293 hasConcept C18431079 @default.
- W3120945293 hasConcept C2780035454 @default.
- W3120945293 hasConcept C33923547 @default.
- W3120945293 hasConcept C41008148 @default.
- W3120945293 hasConcept C54355233 @default.
- W3120945293 hasConcept C60644358 @default.
- W3120945293 hasConcept C70721500 @default.
- W3120945293 hasConcept C74187038 @default.
- W3120945293 hasConcept C86803240 @default.
- W3120945293 hasConcept C98274493 @default.
- W3120945293 hasConceptScore W3120945293C104317684 @default.
- W3120945293 hasConceptScore W3120945293C105795698 @default.
- W3120945293 hasConceptScore W3120945293C117251300 @default.
- W3120945293 hasConceptScore W3120945293C119857082 @default.
- W3120945293 hasConceptScore W3120945293C127716648 @default.
- W3120945293 hasConceptScore W3120945293C150194340 @default.