Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120982017> ?p ?o ?g. }
- W3120982017 abstract "Molecular dynamics is a powerful simulation tool to explore material properties. Most of the realistic material systems are too large to be simulated with first-principles molecular dynamics. Classical molecular dynamics has lower computational cost but requires accurate force fields to achieve chemical accuracy. In this work, we develop a symmetry-adapted graph neural networks framework, named molecular dynamics graph neural networks (MDGNN), to construct force fields automatically for molecular dynamics simulations for both molecules and crystals. This architecture consistently preserves the translation, rotation and permutation invariance in the simulations. We propose a new feature engineering method including higher order contributions and show that MDGNN accurately reproduces the results of both classical and first-principles molecular dynamics. We also demonstrate that force fields constructed by the model has good transferability. Therefore, MDGNN provides an efficient and promising option for molecular dynamics simulations of large scale systems with high accuracy." @default.
- W3120982017 created "2021-01-18" @default.
- W3120982017 creator A5007803202 @default.
- W3120982017 creator A5008180673 @default.
- W3120982017 creator A5013099071 @default.
- W3120982017 creator A5044596532 @default.
- W3120982017 creator A5046946150 @default.
- W3120982017 creator A5080132089 @default.
- W3120982017 creator A5086538805 @default.
- W3120982017 date "2021-01-08" @default.
- W3120982017 modified "2023-09-25" @default.
- W3120982017 title "Symmetry-adapted graph neural networks for constructing molecular dynamics force fields" @default.
- W3120982017 cites W1522301498 @default.
- W3120982017 cites W1572063013 @default.
- W3120982017 cites W1662382123 @default.
- W3120982017 cites W1968336455 @default.
- W3120982017 cites W1970127494 @default.
- W3120982017 cites W1979544533 @default.
- W3120982017 cites W1981368803 @default.
- W3120982017 cites W1981491642 @default.
- W3120982017 cites W1988115241 @default.
- W3120982017 cites W2007395042 @default.
- W3120982017 cites W2025444507 @default.
- W3120982017 cites W2030026210 @default.
- W3120982017 cites W2033086537 @default.
- W3120982017 cites W2046231727 @default.
- W3120982017 cites W2051381895 @default.
- W3120982017 cites W2079105963 @default.
- W3120982017 cites W2083222334 @default.
- W3120982017 cites W2087698390 @default.
- W3120982017 cites W2101234009 @default.
- W3120982017 cites W2115761837 @default.
- W3120982017 cites W2116341502 @default.
- W3120982017 cites W2127827747 @default.
- W3120982017 cites W2136408597 @default.
- W3120982017 cites W2194775991 @default.
- W3120982017 cites W2527189750 @default.
- W3120982017 cites W2560609797 @default.
- W3120982017 cites W2601081289 @default.
- W3120982017 cites W2606780347 @default.
- W3120982017 cites W2742127985 @default.
- W3120982017 cites W2755092149 @default.
- W3120982017 cites W2765259952 @default.
- W3120982017 cites W2770604561 @default.
- W3120982017 cites W2788919350 @default.
- W3120982017 cites W2905224888 @default.
- W3120982017 cites W2918342466 @default.
- W3120982017 cites W2962711740 @default.
- W3120982017 cites W2963121255 @default.
- W3120982017 cites W2963266340 @default.
- W3120982017 cites W2963373387 @default.
- W3120982017 cites W2964051675 @default.
- W3120982017 cites W2970971581 @default.
- W3120982017 cites W2990045899 @default.
- W3120982017 cites W2991989817 @default.
- W3120982017 cites W2996443485 @default.
- W3120982017 cites W3011667710 @default.
- W3120982017 cites W3146803896 @default.
- W3120982017 cites W4210257598 @default.
- W3120982017 doi "https://doi.org/10.48550/arxiv.2101.02930" @default.
- W3120982017 hasPublicationYear "2021" @default.
- W3120982017 type Work @default.
- W3120982017 sameAs 3120982017 @default.
- W3120982017 citedByCount "0" @default.
- W3120982017 crossrefType "posted-content" @default.
- W3120982017 hasAuthorship W3120982017A5007803202 @default.
- W3120982017 hasAuthorship W3120982017A5008180673 @default.
- W3120982017 hasAuthorship W3120982017A5013099071 @default.
- W3120982017 hasAuthorship W3120982017A5044596532 @default.
- W3120982017 hasAuthorship W3120982017A5046946150 @default.
- W3120982017 hasAuthorship W3120982017A5080132089 @default.
- W3120982017 hasAuthorship W3120982017A5086538805 @default.
- W3120982017 hasBestOaLocation W31209820171 @default.
- W3120982017 hasConcept C104317684 @default.
- W3120982017 hasConcept C105580179 @default.
- W3120982017 hasConcept C10803110 @default.
- W3120982017 hasConcept C119857082 @default.
- W3120982017 hasConcept C121332964 @default.
- W3120982017 hasConcept C121864883 @default.
- W3120982017 hasConcept C140331021 @default.
- W3120982017 hasConcept C147597530 @default.
- W3120982017 hasConcept C149364088 @default.
- W3120982017 hasConcept C154945302 @default.
- W3120982017 hasConcept C185592680 @default.
- W3120982017 hasConcept C2524010 @default.
- W3120982017 hasConcept C2779886137 @default.
- W3120982017 hasConcept C33923547 @default.
- W3120982017 hasConcept C41008148 @default.
- W3120982017 hasConcept C55493867 @default.
- W3120982017 hasConcept C59593255 @default.
- W3120982017 hasConcept C61272859 @default.
- W3120982017 hasConcept C80444323 @default.
- W3120982017 hasConceptScore W3120982017C104317684 @default.
- W3120982017 hasConceptScore W3120982017C105580179 @default.
- W3120982017 hasConceptScore W3120982017C10803110 @default.
- W3120982017 hasConceptScore W3120982017C119857082 @default.
- W3120982017 hasConceptScore W3120982017C121332964 @default.
- W3120982017 hasConceptScore W3120982017C121864883 @default.
- W3120982017 hasConceptScore W3120982017C140331021 @default.
- W3120982017 hasConceptScore W3120982017C147597530 @default.