Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120993040> ?p ?o ?g. }
- W3120993040 endingPage "7132" @default.
- W3120993040 startingPage "7123" @default.
- W3120993040 abstract "Industrial Internet of Things (IIoT), as a common industrial application of Internet of Things, has been widely deployed in recent years. End-to-end network traffic is an essential information for many network security and management functions. This article investigates the issues of IIoT-oriented backbone network traffic prediction. Predicting the traffic of IIoT backbone networks is intractable because of the large number of prior network traffic information, which needs to consume expensive network resources for sampling. Motivated by that, we propose an effective prediction mechanism using multitask learning (MTL), which is a special paradigm of transfer learning. A deep learning architecture constructed by MTL and long short-term memory is designed. This deep architecture takes advantage of link loads as additional information to improve prediction accuracy. We provide a theoretical analysis for the MTL mechanism. The effectiveness is evaluated by implementing our mechanism on real network." @default.
- W3120993040 created "2021-01-18" @default.
- W3120993040 creator A5010150000 @default.
- W3120993040 creator A5034529593 @default.
- W3120993040 creator A5034929846 @default.
- W3120993040 creator A5037479768 @default.
- W3120993040 creator A5051195514 @default.
- W3120993040 creator A5059353810 @default.
- W3120993040 creator A5089177690 @default.
- W3120993040 date "2021-10-01" @default.
- W3120993040 modified "2023-10-16" @default.
- W3120993040 title "Network Traffic Prediction in Industrial Internet of Things Backbone Networks: A Multitask Learning Mechanism" @default.
- W3120993040 cites W1976790773 @default.
- W3120993040 cites W1998182736 @default.
- W3120993040 cites W2098874108 @default.
- W3120993040 cites W2102247879 @default.
- W3120993040 cites W2500258836 @default.
- W3120993040 cites W2583813242 @default.
- W3120993040 cites W2762605243 @default.
- W3120993040 cites W2802223983 @default.
- W3120993040 cites W2807184217 @default.
- W3120993040 cites W2807536558 @default.
- W3120993040 cites W2811266402 @default.
- W3120993040 cites W2907063143 @default.
- W3120993040 cites W2914125455 @default.
- W3120993040 cites W2919333918 @default.
- W3120993040 cites W2943086164 @default.
- W3120993040 cites W2965427831 @default.
- W3120993040 cites W2968518053 @default.
- W3120993040 cites W2968522222 @default.
- W3120993040 cites W2980789769 @default.
- W3120993040 cites W2985264667 @default.
- W3120993040 cites W2987793235 @default.
- W3120993040 cites W2991430510 @default.
- W3120993040 cites W2998890193 @default.
- W3120993040 cites W3005623292 @default.
- W3120993040 cites W3038397330 @default.
- W3120993040 cites W3046127806 @default.
- W3120993040 cites W3088881913 @default.
- W3120993040 doi "https://doi.org/10.1109/tii.2021.3050041" @default.
- W3120993040 hasPublicationYear "2021" @default.
- W3120993040 type Work @default.
- W3120993040 sameAs 3120993040 @default.
- W3120993040 citedByCount "20" @default.
- W3120993040 countsByYear W31209930402022 @default.
- W3120993040 countsByYear W31209930402023 @default.
- W3120993040 crossrefType "journal-article" @default.
- W3120993040 hasAuthorship W3120993040A5010150000 @default.
- W3120993040 hasAuthorship W3120993040A5034529593 @default.
- W3120993040 hasAuthorship W3120993040A5034929846 @default.
- W3120993040 hasAuthorship W3120993040A5037479768 @default.
- W3120993040 hasAuthorship W3120993040A5051195514 @default.
- W3120993040 hasAuthorship W3120993040A5059353810 @default.
- W3120993040 hasAuthorship W3120993040A5089177690 @default.
- W3120993040 hasConcept C108583219 @default.
- W3120993040 hasConcept C110875604 @default.
- W3120993040 hasConcept C111472728 @default.
- W3120993040 hasConcept C119857082 @default.
- W3120993040 hasConcept C120314980 @default.
- W3120993040 hasConcept C136764020 @default.
- W3120993040 hasConcept C138885662 @default.
- W3120993040 hasConcept C150899416 @default.
- W3120993040 hasConcept C154945302 @default.
- W3120993040 hasConcept C158379750 @default.
- W3120993040 hasConcept C176715033 @default.
- W3120993040 hasConcept C193415008 @default.
- W3120993040 hasConcept C201100257 @default.
- W3120993040 hasConcept C202839342 @default.
- W3120993040 hasConcept C31258907 @default.
- W3120993040 hasConcept C38652104 @default.
- W3120993040 hasConcept C41008148 @default.
- W3120993040 hasConcept C46451311 @default.
- W3120993040 hasConcept C81860439 @default.
- W3120993040 hasConcept C88796919 @default.
- W3120993040 hasConcept C89611455 @default.
- W3120993040 hasConceptScore W3120993040C108583219 @default.
- W3120993040 hasConceptScore W3120993040C110875604 @default.
- W3120993040 hasConceptScore W3120993040C111472728 @default.
- W3120993040 hasConceptScore W3120993040C119857082 @default.
- W3120993040 hasConceptScore W3120993040C120314980 @default.
- W3120993040 hasConceptScore W3120993040C136764020 @default.
- W3120993040 hasConceptScore W3120993040C138885662 @default.
- W3120993040 hasConceptScore W3120993040C150899416 @default.
- W3120993040 hasConceptScore W3120993040C154945302 @default.
- W3120993040 hasConceptScore W3120993040C158379750 @default.
- W3120993040 hasConceptScore W3120993040C176715033 @default.
- W3120993040 hasConceptScore W3120993040C193415008 @default.
- W3120993040 hasConceptScore W3120993040C201100257 @default.
- W3120993040 hasConceptScore W3120993040C202839342 @default.
- W3120993040 hasConceptScore W3120993040C31258907 @default.
- W3120993040 hasConceptScore W3120993040C38652104 @default.
- W3120993040 hasConceptScore W3120993040C41008148 @default.
- W3120993040 hasConceptScore W3120993040C46451311 @default.
- W3120993040 hasConceptScore W3120993040C81860439 @default.
- W3120993040 hasConceptScore W3120993040C88796919 @default.
- W3120993040 hasConceptScore W3120993040C89611455 @default.
- W3120993040 hasFunder F4320321001 @default.
- W3120993040 hasFunder F4320323172 @default.