Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120995838> ?p ?o ?g. }
- W3120995838 endingPage "105932" @default.
- W3120995838 startingPage "105932" @default.
- W3120995838 abstract "Precise identification of farmland obstacles is an important environmental-perception task for agricultural vehicles. The orchard environment is a complex and unstructured environment, it is difficult to detect obstacles accurately and effectively. Hence, an improved lightweight object detection method based on YOLOv3 is proposed to identify typical obstacles in orchards, such as humans, cement columns and utility poles. The lightweight MobileNetV2 network was used in the model to reduce the running time when extracting image features, and Gaussian model was introduced to improve the detection effect. By reconstructing the loss function in the original YOLOv3 model, the proposed model can predict the accuracy of the positioning box. Based on the orchard image dataset which contains typical obstacles (humans, cement columns and utility poles) in orchards, comparative experiments were conducted on the accuracy and speed between the proposed model, Faster-RCNN, SSD and the original YOLOv3 model. The test results showed that the proposed model outperforms other models in terms of accuracy and speed. For the total test sets, the F1-score and mean average precision (mAP) were 91.76% and 88.64%, respectively. The prediction time of an image with the size of 416 pixels × 416 pixels on the GPU was 13 ms. Therefore, with a low memory requirement, high recognition accuracy, and fast recognition speed, the method proposed in this study can effectively detect typical obstacles in orchards environment, providing a basis for intelligent orchard robots to avoid obstacles." @default.
- W3120995838 created "2021-01-18" @default.
- W3120995838 creator A5021717561 @default.
- W3120995838 creator A5025420502 @default.
- W3120995838 creator A5044099975 @default.
- W3120995838 creator A5054533988 @default.
- W3120995838 creator A5071879662 @default.
- W3120995838 creator A5073411731 @default.
- W3120995838 date "2021-02-01" @default.
- W3120995838 modified "2023-10-16" @default.
- W3120995838 title "Detection of typical obstacles in orchards based on deep convolutional neural network" @default.
- W3120995838 cites W2057782972 @default.
- W3120995838 cites W2076428040 @default.
- W3120995838 cites W2082607915 @default.
- W3120995838 cites W2238589392 @default.
- W3120995838 cites W2261465687 @default.
- W3120995838 cites W2302502886 @default.
- W3120995838 cites W2308575291 @default.
- W3120995838 cites W2312470762 @default.
- W3120995838 cites W2328044022 @default.
- W3120995838 cites W2553151007 @default.
- W3120995838 cites W2767459365 @default.
- W3120995838 cites W2790979755 @default.
- W3120995838 cites W2792041020 @default.
- W3120995838 cites W2889730865 @default.
- W3120995838 cites W2892041571 @default.
- W3120995838 cites W2901502099 @default.
- W3120995838 cites W2912874092 @default.
- W3120995838 cites W2915079506 @default.
- W3120995838 cites W2929667367 @default.
- W3120995838 cites W2936307272 @default.
- W3120995838 cites W2999847126 @default.
- W3120995838 doi "https://doi.org/10.1016/j.compag.2020.105932" @default.
- W3120995838 hasPublicationYear "2021" @default.
- W3120995838 type Work @default.
- W3120995838 sameAs 3120995838 @default.
- W3120995838 citedByCount "16" @default.
- W3120995838 countsByYear W31209958382021 @default.
- W3120995838 countsByYear W31209958382022 @default.
- W3120995838 countsByYear W31209958382023 @default.
- W3120995838 crossrefType "journal-article" @default.
- W3120995838 hasAuthorship W3120995838A5021717561 @default.
- W3120995838 hasAuthorship W3120995838A5025420502 @default.
- W3120995838 hasAuthorship W3120995838A5044099975 @default.
- W3120995838 hasAuthorship W3120995838A5054533988 @default.
- W3120995838 hasAuthorship W3120995838A5071879662 @default.
- W3120995838 hasAuthorship W3120995838A5073411731 @default.
- W3120995838 hasConcept C108583219 @default.
- W3120995838 hasConcept C115961682 @default.
- W3120995838 hasConcept C144027150 @default.
- W3120995838 hasConcept C153180895 @default.
- W3120995838 hasConcept C154945302 @default.
- W3120995838 hasConcept C160633673 @default.
- W3120995838 hasConcept C193536780 @default.
- W3120995838 hasConcept C2776151529 @default.
- W3120995838 hasConcept C2780753983 @default.
- W3120995838 hasConcept C29168087 @default.
- W3120995838 hasConcept C31972630 @default.
- W3120995838 hasConcept C41008148 @default.
- W3120995838 hasConcept C50644808 @default.
- W3120995838 hasConcept C81363708 @default.
- W3120995838 hasConcept C86803240 @default.
- W3120995838 hasConcept C9417928 @default.
- W3120995838 hasConceptScore W3120995838C108583219 @default.
- W3120995838 hasConceptScore W3120995838C115961682 @default.
- W3120995838 hasConceptScore W3120995838C144027150 @default.
- W3120995838 hasConceptScore W3120995838C153180895 @default.
- W3120995838 hasConceptScore W3120995838C154945302 @default.
- W3120995838 hasConceptScore W3120995838C160633673 @default.
- W3120995838 hasConceptScore W3120995838C193536780 @default.
- W3120995838 hasConceptScore W3120995838C2776151529 @default.
- W3120995838 hasConceptScore W3120995838C2780753983 @default.
- W3120995838 hasConceptScore W3120995838C29168087 @default.
- W3120995838 hasConceptScore W3120995838C31972630 @default.
- W3120995838 hasConceptScore W3120995838C41008148 @default.
- W3120995838 hasConceptScore W3120995838C50644808 @default.
- W3120995838 hasConceptScore W3120995838C81363708 @default.
- W3120995838 hasConceptScore W3120995838C86803240 @default.
- W3120995838 hasConceptScore W3120995838C9417928 @default.
- W3120995838 hasFunder F4320321001 @default.
- W3120995838 hasFunder F4320335777 @default.
- W3120995838 hasLocation W31209958381 @default.
- W3120995838 hasOpenAccess W3120995838 @default.
- W3120995838 hasPrimaryLocation W31209958381 @default.
- W3120995838 hasRelatedWork W160430195 @default.
- W3120995838 hasRelatedWork W2090093270 @default.
- W3120995838 hasRelatedWork W2203795865 @default.
- W3120995838 hasRelatedWork W2309573947 @default.
- W3120995838 hasRelatedWork W2738221750 @default.
- W3120995838 hasRelatedWork W3036934147 @default.
- W3120995838 hasRelatedWork W3080162487 @default.
- W3120995838 hasRelatedWork W3156786002 @default.
- W3120995838 hasRelatedWork W4311401716 @default.
- W3120995838 hasRelatedWork W4312857205 @default.
- W3120995838 hasVolume "181" @default.
- W3120995838 isParatext "false" @default.
- W3120995838 isRetracted "false" @default.
- W3120995838 magId "3120995838" @default.