Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121002773> ?p ?o ?g. }
- W3121002773 endingPage "109048" @default.
- W3121002773 startingPage "109048" @default.
- W3121002773 abstract "Industrial Internet of Things (IIoT) lays a new paradigm for the concept of Industry 4.0 and paves an insight for new industrial era. Nowadays smart machines and smart factories use machine learning/deep learning based models for incurring intelligence. However, storing and communicating the data to the cloud and end device leads to issues in preserving privacy. In order to address this issue, Federated Learning (FL) technology is implemented in IIoT by the researchers nowadays to provide safe, accurate, robust and unbiased models. Integrating FL in IIoT ensures that no local sensitive data is exchanged, as the distribution of learning models over the edge devices has become more common with FL. Therefore, only the encrypted notifications and parameters are communicated to the central server. In this paper, we provide a thorough overview on integrating FL with IIoT in terms of privacy, resource and data management. The survey starts by articulating IIoT characteristics and fundamentals of distributed machine learning and FL. The motivation behind integrating IIoT and FL for achieving data privacy preservation and on-device learning are summarized. Then we discuss the potential of using machine learning (ML), deep learning (DL) and blockchain techniques for FL in secure IIoT. Further we analyze and summarize several ways to handle the heterogeneous and huge data. Comprehensive background on data and resource management are then presented, followed by applications of IIoT with FL in automotive, robotics, agriculture, energy, and healthcare industries. Finally, we shed light on challenges, some possible solutions and potential directions for future research." @default.
- W3121002773 created "2021-01-18" @default.
- W3121002773 creator A5018082867 @default.
- W3121002773 creator A5041854978 @default.
- W3121002773 creator A5059877507 @default.
- W3121002773 creator A5062525719 @default.
- W3121002773 creator A5064384685 @default.
- W3121002773 creator A5064768354 @default.
- W3121002773 creator A5064982530 @default.
- W3121002773 date "2022-07-01" @default.
- W3121002773 modified "2023-10-06" @default.
- W3121002773 title "Fusion of Federated Learning and Industrial Internet of Things: A survey" @default.
- W3121002773 cites W1970176196 @default.
- W3121002773 cites W2001475825 @default.
- W3121002773 cites W2035598501 @default.
- W3121002773 cites W2064514722 @default.
- W3121002773 cites W2090321073 @default.
- W3121002773 cites W2248229679 @default.
- W3121002773 cites W2258475915 @default.
- W3121002773 cites W2344301613 @default.
- W3121002773 cites W2477563955 @default.
- W3121002773 cites W2507578125 @default.
- W3121002773 cites W2739692078 @default.
- W3121002773 cites W2767079719 @default.
- W3121002773 cites W2783085497 @default.
- W3121002773 cites W2786070938 @default.
- W3121002773 cites W2787444476 @default.
- W3121002773 cites W2792233253 @default.
- W3121002773 cites W2805933160 @default.
- W3121002773 cites W2806015113 @default.
- W3121002773 cites W2811511976 @default.
- W3121002773 cites W2889349423 @default.
- W3121002773 cites W2898035736 @default.
- W3121002773 cites W2898155611 @default.
- W3121002773 cites W2907638403 @default.
- W3121002773 cites W2907843228 @default.
- W3121002773 cites W2908021422 @default.
- W3121002773 cites W2912213068 @default.
- W3121002773 cites W2940895343 @default.
- W3121002773 cites W2941204645 @default.
- W3121002773 cites W2945357379 @default.
- W3121002773 cites W2951832089 @default.
- W3121002773 cites W2954070046 @default.
- W3121002773 cites W2962804345 @default.
- W3121002773 cites W2963318081 @default.
- W3121002773 cites W2963391656 @default.
- W3121002773 cites W2964156143 @default.
- W3121002773 cites W2969222177 @default.
- W3121002773 cites W2970400322 @default.
- W3121002773 cites W2971626200 @default.
- W3121002773 cites W2972714212 @default.
- W3121002773 cites W2977797911 @default.
- W3121002773 cites W2979680647 @default.
- W3121002773 cites W2991268436 @default.
- W3121002773 cites W2994336423 @default.
- W3121002773 cites W2995049057 @default.
- W3121002773 cites W2996396177 @default.
- W3121002773 cites W2998045710 @default.
- W3121002773 cites W2998664388 @default.
- W3121002773 cites W2999469653 @default.
- W3121002773 cites W3000943722 @default.
- W3121002773 cites W3003545729 @default.
- W3121002773 cites W3006403513 @default.
- W3121002773 cites W3008569902 @default.
- W3121002773 cites W3009627224 @default.
- W3121002773 cites W3010852232 @default.
- W3121002773 cites W3015636663 @default.
- W3121002773 cites W3016025798 @default.
- W3121002773 cites W3016207298 @default.
- W3121002773 cites W3019945581 @default.
- W3121002773 cites W3021361779 @default.
- W3121002773 cites W3021378343 @default.
- W3121002773 cites W3021909663 @default.
- W3121002773 cites W3023574229 @default.
- W3121002773 cites W3025861000 @default.
- W3121002773 cites W3034606981 @default.
- W3121002773 cites W3038816108 @default.
- W3121002773 cites W3042070225 @default.
- W3121002773 cites W3043758338 @default.
- W3121002773 cites W3044855437 @default.
- W3121002773 cites W3045674654 @default.
- W3121002773 cites W3058760796 @default.
- W3121002773 cites W3082060398 @default.
- W3121002773 cites W3082431408 @default.
- W3121002773 cites W3088234149 @default.
- W3121002773 cites W3088798601 @default.
- W3121002773 cites W3088898206 @default.
- W3121002773 cites W3090615085 @default.
- W3121002773 cites W3091870957 @default.
- W3121002773 cites W3094736543 @default.
- W3121002773 cites W3095611529 @default.
- W3121002773 cites W3097060730 @default.
- W3121002773 cites W3100779497 @default.
- W3121002773 cites W3101718285 @default.
- W3121002773 cites W3105324058 @default.
- W3121002773 cites W3111503280 @default.
- W3121002773 cites W3115760506 @default.
- W3121002773 cites W3121029897 @default.