Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121013072> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3121013072 endingPage "7913" @default.
- W3121013072 startingPage "7904" @default.
- W3121013072 abstract "Traffic data collected from sensor networks often exhibit strong spatial correlations and recurrent temporal patterns. Learning these patterns and diagnosing anomalies in such spatiotemporal traffic data is critical to improving transportation systems and services. This paper proposes a dynamic framework to model spatiotemporal traffic data, with a particular application on diagnosing anomalies. Within the framework, we focus on characterizing the variation in system dynamics with a time-varying vector autoregressive model. We impose a low-rank tensor structure to model the collection of time-varying system matrices. As the temporal factor matrix captures the principal patterns/signatures across all time-varying system matrices, it is a useful tool to diagnose abnormal generative mechanisms and unexpected temporal patterns. We demonstrate the proposed tensor learning framework’s effectiveness by experimenting with a synthetic data set and real-world spatiotemporal traffic speed data set. The results show the superiority of the proposed model in uncovering anomalous traffic network dynamics." @default.
- W3121013072 created "2021-01-18" @default.
- W3121013072 creator A5058941074 @default.
- W3121013072 creator A5064041375 @default.
- W3121013072 date "2021-12-01" @default.
- W3121013072 modified "2023-09-26" @default.
- W3121013072 title "Diagnosing Spatiotemporal Traffic Anomalies With Low-Rank Tensor Autoregression" @default.
- W3121013072 cites W2000630868 @default.
- W3121013072 cites W2001419260 @default.
- W3121013072 cites W2024165284 @default.
- W3121013072 cites W2058898885 @default.
- W3121013072 cites W2089272197 @default.
- W3121013072 cites W2117368434 @default.
- W3121013072 cites W2122646361 @default.
- W3121013072 cites W2137925700 @default.
- W3121013072 cites W2177262641 @default.
- W3121013072 cites W2276747974 @default.
- W3121013072 cites W2343462218 @default.
- W3121013072 cites W2347172331 @default.
- W3121013072 cites W2465297350 @default.
- W3121013072 cites W2508708614 @default.
- W3121013072 cites W2524376963 @default.
- W3121013072 cites W2767854248 @default.
- W3121013072 cites W2790962085 @default.
- W3121013072 cites W2791350099 @default.
- W3121013072 cites W2791968238 @default.
- W3121013072 cites W2902048196 @default.
- W3121013072 cites W2990022967 @default.
- W3121013072 doi "https://doi.org/10.1109/tits.2020.3044466" @default.
- W3121013072 hasPublicationYear "2021" @default.
- W3121013072 type Work @default.
- W3121013072 sameAs 3121013072 @default.
- W3121013072 citedByCount "6" @default.
- W3121013072 countsByYear W31210130722021 @default.
- W3121013072 countsByYear W31210130722022 @default.
- W3121013072 countsByYear W31210130722023 @default.
- W3121013072 crossrefType "journal-article" @default.
- W3121013072 hasAuthorship W3121013072A5058941074 @default.
- W3121013072 hasAuthorship W3121013072A5064041375 @default.
- W3121013072 hasConcept C114614502 @default.
- W3121013072 hasConcept C119857082 @default.
- W3121013072 hasConcept C124101348 @default.
- W3121013072 hasConcept C149782125 @default.
- W3121013072 hasConcept C154945302 @default.
- W3121013072 hasConcept C155281189 @default.
- W3121013072 hasConcept C159877910 @default.
- W3121013072 hasConcept C164226766 @default.
- W3121013072 hasConcept C177264268 @default.
- W3121013072 hasConcept C199360897 @default.
- W3121013072 hasConcept C202444582 @default.
- W3121013072 hasConcept C33923547 @default.
- W3121013072 hasConcept C41008148 @default.
- W3121013072 hasConcept C58489278 @default.
- W3121013072 hasConcept C67186912 @default.
- W3121013072 hasConcept C77088390 @default.
- W3121013072 hasConceptScore W3121013072C114614502 @default.
- W3121013072 hasConceptScore W3121013072C119857082 @default.
- W3121013072 hasConceptScore W3121013072C124101348 @default.
- W3121013072 hasConceptScore W3121013072C149782125 @default.
- W3121013072 hasConceptScore W3121013072C154945302 @default.
- W3121013072 hasConceptScore W3121013072C155281189 @default.
- W3121013072 hasConceptScore W3121013072C159877910 @default.
- W3121013072 hasConceptScore W3121013072C164226766 @default.
- W3121013072 hasConceptScore W3121013072C177264268 @default.
- W3121013072 hasConceptScore W3121013072C199360897 @default.
- W3121013072 hasConceptScore W3121013072C202444582 @default.
- W3121013072 hasConceptScore W3121013072C33923547 @default.
- W3121013072 hasConceptScore W3121013072C41008148 @default.
- W3121013072 hasConceptScore W3121013072C58489278 @default.
- W3121013072 hasConceptScore W3121013072C67186912 @default.
- W3121013072 hasConceptScore W3121013072C77088390 @default.
- W3121013072 hasFunder F4320331165 @default.
- W3121013072 hasFunder F4320334593 @default.
- W3121013072 hasIssue "12" @default.
- W3121013072 hasLocation W31210130721 @default.
- W3121013072 hasOpenAccess W3121013072 @default.
- W3121013072 hasPrimaryLocation W31210130721 @default.
- W3121013072 hasRelatedWork W2078736197 @default.
- W3121013072 hasRelatedWork W2091018730 @default.
- W3121013072 hasRelatedWork W2098669189 @default.
- W3121013072 hasRelatedWork W2250140425 @default.
- W3121013072 hasRelatedWork W2389064843 @default.
- W3121013072 hasRelatedWork W2389272265 @default.
- W3121013072 hasRelatedWork W2734587838 @default.
- W3121013072 hasRelatedWork W2966207284 @default.
- W3121013072 hasRelatedWork W3121013072 @default.
- W3121013072 hasRelatedWork W4280583453 @default.
- W3121013072 hasVolume "22" @default.
- W3121013072 isParatext "false" @default.
- W3121013072 isRetracted "false" @default.
- W3121013072 magId "3121013072" @default.
- W3121013072 workType "article" @default.