Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121182022> ?p ?o ?g. }
- W3121182022 endingPage "106008" @default.
- W3121182022 startingPage "106008" @default.
- W3121182022 abstract "Carbonatites host the world's most important rare earth element (REE) resources. The origins of REE mineralization in carbonatite-related deposits, particularly the role of hydrothermal fluids in REE mobilization and mineralization, remain enigmatic. The Cenozoic Mianning–Dechang REE belt in eastern Tibet is one of the largest REE production regions worldwide, and is an ideal area for investigating REE mineralization. Geological investigations and fluid inclusion studies suggest that ore fluids in this belt evolved from hydrothermal stage I (fenitization at high temperatures of ~480 °C) to hydrothermal stage II (calcite, quartz, barite, and fluorite crystallization at temperatures of 300–350 °C and salinities of ~20 wt% NaCl equiv.), and then to the REE mineralization stage (temperatures of ~200 °C and low salinities of ~9 wt% NaCl equiv.). The bulk fluid compositions demonstrate that the ore fluids contained significant amounts of alkalis (up to 5 wt% Na + K), halogens (up to 12 wt% Cl; up to 7 wt% F), sulfate (>2 wt% SO42−), Ba (>1123 ppm), Sr (>1120 ppm), and REEs (>5 wt%). Chondrite-normalized REE patterns of these fluids are light REE-enriched and exhibit moderate depletion in Eu ([Eu/Eu⁎]CN = 0.85 ± 0.08), similar to the carbonatites and nordmarkites. These fluid characteristics and plots of Rb/Na vs. K/Na and Mn vs. Na suggest that the ore fluids in the Mianning–Dechang REE belt were derived from a late-stage alkaline–carbonatitic magma. High concentrations of Cl−, F−, SO42−, and REEs, and the absence of REE fluoride (REEF3) and fluorite (CaF2), suggest that the ore fluids in hydrothermal stage I were a high-temperature, SO42−-rich (>2 wt%), and acidic fluid system (pH < 3.5). In this system, chloride REE complexes were predominant over fluoride and sulfate REE complexes, which resulted in efficient transport of REEs. Sulfate species were predominant in hydrothermal stage II at temperatures of 260–350 °C and a pH between 3.5 and 5.2. The higher pH and fluid cooling from hydrothermal stage I to hydrothermal stage II caused an increase in F−, which in turn lowered fluid REE concentrations, owing to the formation of REE-rich fluorite. This suggests that F− was a depositional ligand in hydrothermal stage II. Continued fluid cooling (~200 °C) and increasing pH (~6), combined with the precipitation of barite and fluorite in the REE mineralization stage, destabilized the REE complexes because of the decreasing concentrations of SO42−, Cl−, and F−, which thus led to widespread REE deposition. A review of different-sized deposits in the Mianning–Dechang REE belt indicates that appreciable amounts of SO42−, Cl−, REEs, CO2, and particularly F− and alkalis in fluids, along with a high fluid exsolution temperature, represent the ideal conditions for potential REE mineralization in a carbonatite-related setting." @default.
- W3121182022 created "2021-02-01" @default.
- W3121182022 creator A5005610147 @default.
- W3121182022 creator A5021293751 @default.
- W3121182022 creator A5091288679 @default.
- W3121182022 date "2021-04-01" @default.
- W3121182022 modified "2023-10-16" @default.
- W3121182022 title "The role of sulfate-, alkali-, and halogen-rich fluids in mobilization and mineralization of rare earth elements: Insights from bulk fluid compositions in the Mianning–Dechang carbonatite-related REE belt, southwestern China" @default.
- W3121182022 cites W1586931791 @default.
- W3121182022 cites W1966448092 @default.
- W3121182022 cites W1969859799 @default.
- W3121182022 cites W1979877704 @default.
- W3121182022 cites W1994014047 @default.
- W3121182022 cites W2000468402 @default.
- W3121182022 cites W2006532966 @default.
- W3121182022 cites W2016666006 @default.
- W3121182022 cites W2016917671 @default.
- W3121182022 cites W2018494773 @default.
- W3121182022 cites W2018869039 @default.
- W3121182022 cites W2028411875 @default.
- W3121182022 cites W2030153642 @default.
- W3121182022 cites W2030219984 @default.
- W3121182022 cites W2031057485 @default.
- W3121182022 cites W2040121420 @default.
- W3121182022 cites W2041381933 @default.
- W3121182022 cites W2041455558 @default.
- W3121182022 cites W2043657251 @default.
- W3121182022 cites W2044222800 @default.
- W3121182022 cites W2048754665 @default.
- W3121182022 cites W2052443737 @default.
- W3121182022 cites W2054672918 @default.
- W3121182022 cites W2055238891 @default.
- W3121182022 cites W2056547574 @default.
- W3121182022 cites W2065746066 @default.
- W3121182022 cites W2067270209 @default.
- W3121182022 cites W2067831104 @default.
- W3121182022 cites W2069152170 @default.
- W3121182022 cites W2076179867 @default.
- W3121182022 cites W2098958698 @default.
- W3121182022 cites W2099512276 @default.
- W3121182022 cites W2115518283 @default.
- W3121182022 cites W2119028865 @default.
- W3121182022 cites W2128902587 @default.
- W3121182022 cites W2133042542 @default.
- W3121182022 cites W2133440508 @default.
- W3121182022 cites W2133678589 @default.
- W3121182022 cites W2163537611 @default.
- W3121182022 cites W2165232962 @default.
- W3121182022 cites W2172219411 @default.
- W3121182022 cites W2191589729 @default.
- W3121182022 cites W2201805341 @default.
- W3121182022 cites W2239284222 @default.
- W3121182022 cites W2317189145 @default.
- W3121182022 cites W2325725653 @default.
- W3121182022 cites W2327214248 @default.
- W3121182022 cites W2330293686 @default.
- W3121182022 cites W2408849960 @default.
- W3121182022 cites W2474779303 @default.
- W3121182022 cites W2528166575 @default.
- W3121182022 cites W2573706076 @default.
- W3121182022 cites W2573979066 @default.
- W3121182022 cites W2591535859 @default.
- W3121182022 cites W2789492474 @default.
- W3121182022 cites W2792275432 @default.
- W3121182022 cites W2794029271 @default.
- W3121182022 cites W2801806558 @default.
- W3121182022 cites W2804488353 @default.
- W3121182022 cites W2889530414 @default.
- W3121182022 cites W2899126611 @default.
- W3121182022 cites W2911583488 @default.
- W3121182022 cites W2915460620 @default.
- W3121182022 cites W2917213742 @default.
- W3121182022 cites W2947972904 @default.
- W3121182022 cites W2949588571 @default.
- W3121182022 cites W3007275371 @default.
- W3121182022 cites W3014554781 @default.
- W3121182022 cites W3058218738 @default.
- W3121182022 cites W606076456 @default.
- W3121182022 cites W640908151 @default.
- W3121182022 doi "https://doi.org/10.1016/j.lithos.2021.106008" @default.
- W3121182022 hasPublicationYear "2021" @default.
- W3121182022 type Work @default.
- W3121182022 sameAs 3121182022 @default.
- W3121182022 citedByCount "12" @default.
- W3121182022 countsByYear W31211820222021 @default.
- W3121182022 countsByYear W31211820222022 @default.
- W3121182022 countsByYear W31211820222023 @default.
- W3121182022 crossrefType "journal-article" @default.
- W3121182022 hasAuthorship W3121182022A5005610147 @default.
- W3121182022 hasAuthorship W3121182022A5021293751 @default.
- W3121182022 hasAuthorship W3121182022A5091288679 @default.
- W3121182022 hasConcept C111696902 @default.
- W3121182022 hasConcept C127313418 @default.
- W3121182022 hasConcept C140441402 @default.
- W3121182022 hasConcept C156622251 @default.
- W3121182022 hasConcept C159390177 @default.
- W3121182022 hasConcept C159750122 @default.
- W3121182022 hasConcept C165205528 @default.