Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121191263> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3121191263 abstract "In this research we propose a web-based adaptive self-explicated approach for multi-attribute preference measurement (conjoint analysis) with a large number (ten or more) of attributes. In the empirical application reported here the proposed approach provides a substantial and significant improvement in predictive ability over current preference measurement methods designed for handling a large number of attributes. Our approach also overcomes some of the limitations of previous self-explicated approaches. Two methods are commonly used to estimate attribute importances in self-explicated studies: ratings and constant-sum allocation. A common problem with the ratings approach is that it does not explicitly capture the tradeoff between attributes; it is easy for respondents to say that every attribute is important. The constant-sum approach overcomes this limitation, but with a large number of product attributes it becomes difficult for the respondent to divide a constant sum among all the attributes. We developed a computer-based self-explicated approach that breaks down the attribute importance question into a sequence of constant-sum paired comparison questions. We first used a fixed design in which the set of questions is chosen from a balanced orthogonal design and then extend it to an adaptive design in which the questions are chosen adaptively for each respondent to maximize the information elicited from each paired comparison question. Unlike the traditional self-explicated approach, the proposed approach provides (approximate) standard errors for attribute importance. In a study involving digital cameras described on twelve attributes, we find that the predictive validity (correctly predicted top choices) of the proposed adaptive approach is 35%-52% higher than that of Adaptive Conjoint Analysis, the Fast Polyhedral approach, and the traditional self-explicated approach, irrespective of whether the part-worths were estimated using classical or hierarchical Bayes estimation. Additionally, the proposed adaptive approach reduces the respondents' burden by keeping the number of paired comparison questions small without significant loss of predictive validity." @default.
- W3121191263 created "2021-02-01" @default.
- W3121191263 creator A5002138970 @default.
- W3121191263 creator A5034164853 @default.
- W3121191263 date "2007-01-01" @default.
- W3121191263 modified "2023-09-22" @default.
- W3121191263 title "Adaptive Self-Explication of Multi-attribute Preferences" @default.
- W3121191263 hasPublicationYear "2007" @default.
- W3121191263 type Work @default.
- W3121191263 sameAs 3121191263 @default.
- W3121191263 citedByCount "0" @default.
- W3121191263 crossrefType "posted-content" @default.
- W3121191263 hasAuthorship W3121191263A5002138970 @default.
- W3121191263 hasAuthorship W3121191263A5034164853 @default.
- W3121191263 hasConcept C105795698 @default.
- W3121191263 hasConcept C119857082 @default.
- W3121191263 hasConcept C124101348 @default.
- W3121191263 hasConcept C154945302 @default.
- W3121191263 hasConcept C177264268 @default.
- W3121191263 hasConcept C17744445 @default.
- W3121191263 hasConcept C199360897 @default.
- W3121191263 hasConcept C199539241 @default.
- W3121191263 hasConcept C2776640315 @default.
- W3121191263 hasConcept C2777027219 @default.
- W3121191263 hasConcept C2778054375 @default.
- W3121191263 hasConcept C2781249084 @default.
- W3121191263 hasConcept C33923547 @default.
- W3121191263 hasConcept C41008148 @default.
- W3121191263 hasConceptScore W3121191263C105795698 @default.
- W3121191263 hasConceptScore W3121191263C119857082 @default.
- W3121191263 hasConceptScore W3121191263C124101348 @default.
- W3121191263 hasConceptScore W3121191263C154945302 @default.
- W3121191263 hasConceptScore W3121191263C177264268 @default.
- W3121191263 hasConceptScore W3121191263C17744445 @default.
- W3121191263 hasConceptScore W3121191263C199360897 @default.
- W3121191263 hasConceptScore W3121191263C199539241 @default.
- W3121191263 hasConceptScore W3121191263C2776640315 @default.
- W3121191263 hasConceptScore W3121191263C2777027219 @default.
- W3121191263 hasConceptScore W3121191263C2778054375 @default.
- W3121191263 hasConceptScore W3121191263C2781249084 @default.
- W3121191263 hasConceptScore W3121191263C33923547 @default.
- W3121191263 hasConceptScore W3121191263C41008148 @default.
- W3121191263 hasLocation W31211912631 @default.
- W3121191263 hasOpenAccess W3121191263 @default.
- W3121191263 hasPrimaryLocation W31211912631 @default.
- W3121191263 hasRelatedWork W1511138765 @default.
- W3121191263 hasRelatedWork W1784209695 @default.
- W3121191263 hasRelatedWork W1893783224 @default.
- W3121191263 hasRelatedWork W1972281908 @default.
- W3121191263 hasRelatedWork W2041715359 @default.
- W3121191263 hasRelatedWork W2060979868 @default.
- W3121191263 hasRelatedWork W2068315095 @default.
- W3121191263 hasRelatedWork W2126493634 @default.
- W3121191263 hasRelatedWork W2289999517 @default.
- W3121191263 hasRelatedWork W2360674089 @default.
- W3121191263 hasRelatedWork W2364604920 @default.
- W3121191263 hasRelatedWork W2377024696 @default.
- W3121191263 hasRelatedWork W2773125201 @default.
- W3121191263 hasRelatedWork W2831026053 @default.
- W3121191263 hasRelatedWork W2900287232 @default.
- W3121191263 hasRelatedWork W2910878450 @default.
- W3121191263 hasRelatedWork W2962954578 @default.
- W3121191263 hasRelatedWork W3196110098 @default.
- W3121191263 hasRelatedWork W3196591296 @default.
- W3121191263 hasRelatedWork W820659392 @default.
- W3121191263 isParatext "false" @default.
- W3121191263 isRetracted "false" @default.
- W3121191263 magId "3121191263" @default.
- W3121191263 workType "article" @default.