Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121336265> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3121336265 endingPage "887" @default.
- W3121336265 startingPage "871" @default.
- W3121336265 abstract "Abstract In this paper we give a classification of the asymptotic expansion of the q -expansion of reciprocals of Eisenstein series $$E_k$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:math> of weight k for the modular group $$mathop {mathrm{SL}}_2(mathbb {Z})$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>SL</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . For $$k ge 12$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> </mml:math> even, this extends results of Hardy and Ramanujan, and Berndt, Bialek, and Yee, utilizing the Circle Method on the one hand, and results of Petersson, and Bringmann and Kane, developing a theory of meromorphic Poincaré series on the other. We follow a uniform approach, based on the zeros of the Eisenstein series with the largest imaginary part. These special zeros provide information on the singularities of the Fourier expansion of $$1/E_k(z)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> with respect to $$q = e^{2 pi i z}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>π</mml:mi> <mml:mi>i</mml:mi> <mml:mi>z</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> ." @default.
- W3121336265 created "2021-02-01" @default.
- W3121336265 creator A5015562884 @default.
- W3121336265 creator A5064890731 @default.
- W3121336265 date "2022-03-12" @default.
- W3121336265 modified "2023-09-25" @default.
- W3121336265 title "Asymptotic expansion of Fourier coefficients of reciprocals of Eisenstein series" @default.
- W3121336265 cites W1528542528 @default.
- W3121336265 cites W1541520317 @default.
- W3121336265 cites W1771710947 @default.
- W3121336265 cites W1920391216 @default.
- W3121336265 cites W1985328207 @default.
- W3121336265 cites W2015384686 @default.
- W3121336265 cites W2035293325 @default.
- W3121336265 cites W2048381158 @default.
- W3121336265 cites W2051240399 @default.
- W3121336265 cites W2063302961 @default.
- W3121336265 cites W2802920596 @default.
- W3121336265 cites W2964303524 @default.
- W3121336265 cites W4253219771 @default.
- W3121336265 cites W4297913868 @default.
- W3121336265 cites W2082922586 @default.
- W3121336265 doi "https://doi.org/10.1007/s11139-022-00563-7" @default.
- W3121336265 hasPublicationYear "2022" @default.
- W3121336265 type Work @default.
- W3121336265 sameAs 3121336265 @default.
- W3121336265 citedByCount "1" @default.
- W3121336265 countsByYear W31213362652021 @default.
- W3121336265 crossrefType "journal-article" @default.
- W3121336265 hasAuthorship W3121336265A5015562884 @default.
- W3121336265 hasAuthorship W3121336265A5064890731 @default.
- W3121336265 hasBestOaLocation W31213362651 @default.
- W3121336265 hasConcept C11413529 @default.
- W3121336265 hasConcept C154945302 @default.
- W3121336265 hasConcept C33923547 @default.
- W3121336265 hasConcept C41008148 @default.
- W3121336265 hasConceptScore W3121336265C11413529 @default.
- W3121336265 hasConceptScore W3121336265C154945302 @default.
- W3121336265 hasConceptScore W3121336265C33923547 @default.
- W3121336265 hasConceptScore W3121336265C41008148 @default.
- W3121336265 hasFunder F4320324232 @default.
- W3121336265 hasIssue "3" @default.
- W3121336265 hasLocation W31213362651 @default.
- W3121336265 hasLocation W31213362652 @default.
- W3121336265 hasOpenAccess W3121336265 @default.
- W3121336265 hasPrimaryLocation W31213362651 @default.
- W3121336265 hasRelatedWork W2051487156 @default.
- W3121336265 hasRelatedWork W2052122378 @default.
- W3121336265 hasRelatedWork W2053286651 @default.
- W3121336265 hasRelatedWork W2073681303 @default.
- W3121336265 hasRelatedWork W2317200988 @default.
- W3121336265 hasRelatedWork W2544423928 @default.
- W3121336265 hasRelatedWork W2947381795 @default.
- W3121336265 hasRelatedWork W2181413294 @default.
- W3121336265 hasRelatedWork W2181743346 @default.
- W3121336265 hasRelatedWork W2187401768 @default.
- W3121336265 hasVolume "58" @default.
- W3121336265 isParatext "false" @default.
- W3121336265 isRetracted "false" @default.
- W3121336265 magId "3121336265" @default.
- W3121336265 workType "article" @default.