Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121445811> ?p ?o ?g. }
- W3121445811 endingPage "113765" @default.
- W3121445811 startingPage "113765" @default.
- W3121445811 abstract "• A novel waste heat recovery system is proposed based on WTE plant. • A comprehensive thermodynamic analysis of the system is conducted. • Based on NPV, the dynamic payback period of new WTE plant is studied. • Sensitivity analysis as well as multi-objective optimization are employed. • The system levelized cost of electricity and ecological efficiency are studied. Owning to its advantage in waste reuse, waste-to-energy technology, has become the most popular way to deal with the increasingly municipal solid waste. However, the energy efficiency of waste-to-energy plant is limited because of the huge heat loss. In this study, a novel waste heat recovery system, consisting of a supercritical CO 2 cycle, an organic Rankine cycle, and an absorption refrigeration cycle, is proposed to improve both the thermal efficiency and economic performance of the waste-to-energy plant. A comprehensive thermodynamic analysis is performed to study the energy and exergy efficiency of the system by establishing a reliable mathematical model. Net present value analysis is carried out to study the final net profit and dynamic investment payback period. Besides, the levelized cost of electricity and ecological efficiency of the waste-to-energy plant are investigated. Based on the results of parameter sensitivity analysis of the system, multiple objective optimizations is carried out by using non-dominated sorting genetic algorithm-II. The results show that the combined system obtains the highest economic benefit in winter. The energy efficiency of the waste-to-energy plant can be up to 75.07% after adding the waste heat recovery system, with an increment of 54.58%. And the maximum net present value and minimum dynamic payback period are 23.22 M$ and 4.11 years, separately. Compared with the original waste-to-energy plant, the levelized cost of electricity and ecological efficiency are decreased by 68% and increased by 16%, respectively. From the results of sensitivity analysis, the isentropic efficiency of turbine of supercritical CO 2 cycle, the evaporator pressure of organic Rankine cycle, and the generator temperature of absorption refrigeration cycle are the most sensitive factors for the thermal efficiency and economic performance of the system. The exergy destruction analysis shows that the exergy destruction rate of the boiler declines to 48.41% after adding the waste heat recovery system, but the condensers need further improvement for their lowest exergy efficiency. In conclusion, the waste-to-energy plant can provide electricity, heating and cooling simultaneously after adding the waste heat recovery system and the proposed system is theoretically feasible from the results of thermodynamic, economic and environmental analysis." @default.
- W3121445811 created "2021-02-01" @default.
- W3121445811 creator A5004521836 @default.
- W3121445811 creator A5008518798 @default.
- W3121445811 creator A5009032328 @default.
- W3121445811 creator A5066302798 @default.
- W3121445811 creator A5067857074 @default.
- W3121445811 creator A5068221627 @default.
- W3121445811 creator A5071557402 @default.
- W3121445811 creator A5084977393 @default.
- W3121445811 date "2021-02-01" @default.
- W3121445811 modified "2023-10-10" @default.
- W3121445811 title "4E analysis and multiple objective optimizations of a cascade waste heat recovery system for waste-to-energy plant" @default.
- W3121445811 cites W1808912889 @default.
- W3121445811 cites W1921787922 @default.
- W3121445811 cites W1970379051 @default.
- W3121445811 cites W1971706381 @default.
- W3121445811 cites W1973159138 @default.
- W3121445811 cites W2020263892 @default.
- W3121445811 cites W2040470451 @default.
- W3121445811 cites W2065527028 @default.
- W3121445811 cites W2069280595 @default.
- W3121445811 cites W2126105956 @default.
- W3121445811 cites W2519851367 @default.
- W3121445811 cites W2546792282 @default.
- W3121445811 cites W2553928212 @default.
- W3121445811 cites W2569609945 @default.
- W3121445811 cites W2622185879 @default.
- W3121445811 cites W2751023336 @default.
- W3121445811 cites W2756253183 @default.
- W3121445811 cites W2759298779 @default.
- W3121445811 cites W2766123087 @default.
- W3121445811 cites W2790166661 @default.
- W3121445811 cites W2792919007 @default.
- W3121445811 cites W2802595310 @default.
- W3121445811 cites W2803395538 @default.
- W3121445811 cites W2883951908 @default.
- W3121445811 cites W2884081421 @default.
- W3121445811 cites W2891833385 @default.
- W3121445811 cites W2899564501 @default.
- W3121445811 cites W2900079195 @default.
- W3121445811 cites W2904118792 @default.
- W3121445811 cites W2925510142 @default.
- W3121445811 cites W2943414713 @default.
- W3121445811 cites W2945474191 @default.
- W3121445811 cites W2945827262 @default.
- W3121445811 cites W2953910299 @default.
- W3121445811 cites W2964747395 @default.
- W3121445811 cites W2965685479 @default.
- W3121445811 cites W2973585423 @default.
- W3121445811 cites W2976221299 @default.
- W3121445811 cites W2976708336 @default.
- W3121445811 cites W2980913182 @default.
- W3121445811 cites W2991170083 @default.
- W3121445811 cites W2997767716 @default.
- W3121445811 cites W2998906872 @default.
- W3121445811 cites W3003294806 @default.
- W3121445811 cites W3003458179 @default.
- W3121445811 cites W3010644265 @default.
- W3121445811 cites W3013441533 @default.
- W3121445811 cites W3021322441 @default.
- W3121445811 cites W3022929576 @default.
- W3121445811 cites W3025964553 @default.
- W3121445811 cites W3033101967 @default.
- W3121445811 cites W3033374245 @default.
- W3121445811 cites W3038360801 @default.
- W3121445811 cites W3039412772 @default.
- W3121445811 cites W3044793929 @default.
- W3121445811 cites W3044964526 @default.
- W3121445811 cites W3046706920 @default.
- W3121445811 cites W3049039633 @default.
- W3121445811 cites W3084253385 @default.
- W3121445811 cites W3092177708 @default.
- W3121445811 cites W3094268336 @default.
- W3121445811 cites W3125707644 @default.
- W3121445811 cites W4236838657 @default.
- W3121445811 doi "https://doi.org/10.1016/j.enconman.2020.113765" @default.
- W3121445811 hasPublicationYear "2021" @default.
- W3121445811 type Work @default.
- W3121445811 sameAs 3121445811 @default.
- W3121445811 citedByCount "22" @default.
- W3121445811 countsByYear W31214458112021 @default.
- W3121445811 countsByYear W31214458112022 @default.
- W3121445811 countsByYear W31214458112023 @default.
- W3121445811 crossrefType "journal-article" @default.
- W3121445811 hasAuthorship W3121445811A5004521836 @default.
- W3121445811 hasAuthorship W3121445811A5008518798 @default.
- W3121445811 hasAuthorship W3121445811A5009032328 @default.
- W3121445811 hasAuthorship W3121445811A5066302798 @default.
- W3121445811 hasAuthorship W3121445811A5067857074 @default.
- W3121445811 hasAuthorship W3121445811A5068221627 @default.
- W3121445811 hasAuthorship W3121445811A5071557402 @default.
- W3121445811 hasAuthorship W3121445811A5084977393 @default.
- W3121445811 hasConcept C101519877 @default.
- W3121445811 hasConcept C105795698 @default.
- W3121445811 hasConcept C105923489 @default.
- W3121445811 hasConcept C105994980 @default.
- W3121445811 hasConcept C107706546 @default.