Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121480359> ?p ?o ?g. }
- W3121480359 endingPage "100018" @default.
- W3121480359 startingPage "100018" @default.
- W3121480359 abstract "Generating crop type maps using satellite remote sensing requires robust data acquisition at both high spatial and temporal resolutions to resolve rapid phenological transition at the field scale. The increasing availability of freely-available, moderate-resolution satellite data such as the Landsat and Sentinel series of satellites offers an unprecedent opportunity for large-area crop type mapping. In this study, we evaluated the utility of Landsat (7&8), Sentinel-2 (A&B), Sentinel-1 (A&B) and the Moderate Resolution Imaging Spectroradiometer (MODIS) for mapping corn and soybean in the United States. We designed a series of classification experiments using these satellite data over a nationally distributed sample as input and the United States Department of Agriculture (USDA) Cropland Data Layer (CDL) as reference for training and accuracy assessment. A set of tests were performed with data from each satellite senor as input to derive the potential accuracy achievable by the satellite/sensor. In comparison, another set of tests were conducted with all data from all sensors as input to derive the combined accuracy as well as to evaluate the utility of each sensor, spectral band and acquisition date. Results showed that data from one satellite/sensor, either Landsat, Sentinel-2 or Sentinel-1, could achieve 94.8–96.8% accuracy, whereas the coarse-resolution MODIS produced about 92% accuracy, for both corn and soybean. Combing data from all sensors marginally improved the accuracy to 97.0% for both crops. Based on the criterion of deviation reduction in decision tree models, Landsat was identified as the most useful satellite/sensor for soybean classification, especially the two short-wave infrared bands, whereas Sentinel-2 was recognized as the most valuable satellite/sensor for corn classification, especially the red edge, near infrared and short-wave infrared bands. Optical data were always chosen over Synthetic Aperture Radar (SAR) data by the pixel-based supervised classification algorithm except in some persistently cloudy regions, although using SAR data alone can also achieve very high accuracy. The virtual constellation of Landsat and Sentinel-2 increased data revisit frequency to 4–7 days in the U.S. during June to September 2017. However, cloud and shadow reduced clear-view observations by half. Satellite data acquisitions in July were most critical for mapping corn whereas data in July and August were most important for mapping soybean. Our analysis suggested that, without the practical limitation of training data, current freely-available, moderate-resolution satellite data including Landsat, Sentinel-2, Sentinel-1 and MODIS, can achieve a potential accuracy of over 95% for national-scale crop type mapping over large industrial agricultural regions such as the United States. Expanding the spatial coverage and maintaining consistent acquisitions of Sentinel-1 data is a high priority to enable operational crop mapping and monitoring over large areas. • Over 95% accuracy can be achieved with one sensor and representative training. • Shortwave infrared bands are most useful for mapping soybean and corn. • S2 red-edge bands provide valuable information. • Harmonize SWIR and red-edge bands for Landsat and S2 can improve crop mapping. • Improve S1 data acquisition is a priority for operational crop monitoring." @default.
- W3121480359 created "2021-02-01" @default.
- W3121480359 creator A5006996458 @default.
- W3121480359 creator A5054864172 @default.
- W3121480359 creator A5065774182 @default.
- W3121480359 creator A5074759135 @default.
- W3121480359 date "2021-06-01" @default.
- W3121480359 modified "2023-10-05" @default.
- W3121480359 title "An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping" @default.
- W3121480359 cites W1969834758 @default.
- W3121480359 cites W1972923945 @default.
- W3121480359 cites W2008085934 @default.
- W3121480359 cites W2024339093 @default.
- W3121480359 cites W2032667441 @default.
- W3121480359 cites W2035549557 @default.
- W3121480359 cites W2038951852 @default.
- W3121480359 cites W2041054901 @default.
- W3121480359 cites W2050076538 @default.
- W3121480359 cites W2056435747 @default.
- W3121480359 cites W2072465375 @default.
- W3121480359 cites W2129038850 @default.
- W3121480359 cites W2139709933 @default.
- W3121480359 cites W2157675604 @default.
- W3121480359 cites W2160434086 @default.
- W3121480359 cites W2199031689 @default.
- W3121480359 cites W2342893289 @default.
- W3121480359 cites W2562763039 @default.
- W3121480359 cites W2578830027 @default.
- W3121480359 cites W2594466018 @default.
- W3121480359 cites W2603716527 @default.
- W3121480359 cites W2607245364 @default.
- W3121480359 cites W2618092941 @default.
- W3121480359 cites W2728388975 @default.
- W3121480359 cites W2745131289 @default.
- W3121480359 cites W2751786729 @default.
- W3121480359 cites W2757797739 @default.
- W3121480359 cites W2766727660 @default.
- W3121480359 cites W2791592925 @default.
- W3121480359 cites W2799417842 @default.
- W3121480359 cites W2801747952 @default.
- W3121480359 cites W2810242891 @default.
- W3121480359 cites W2888090573 @default.
- W3121480359 cites W2897285410 @default.
- W3121480359 cites W2900217217 @default.
- W3121480359 cites W2905254777 @default.
- W3121480359 cites W2999347784 @default.
- W3121480359 cites W3010657180 @default.
- W3121480359 doi "https://doi.org/10.1016/j.srs.2021.100018" @default.
- W3121480359 hasPublicationYear "2021" @default.
- W3121480359 type Work @default.
- W3121480359 sameAs 3121480359 @default.
- W3121480359 citedByCount "39" @default.
- W3121480359 countsByYear W31214803592021 @default.
- W3121480359 countsByYear W31214803592022 @default.
- W3121480359 countsByYear W31214803592023 @default.
- W3121480359 crossrefType "journal-article" @default.
- W3121480359 hasAuthorship W3121480359A5006996458 @default.
- W3121480359 hasAuthorship W3121480359A5054864172 @default.
- W3121480359 hasAuthorship W3121480359A5065774182 @default.
- W3121480359 hasAuthorship W3121480359A5074759135 @default.
- W3121480359 hasBestOaLocation W31214803591 @default.
- W3121480359 hasConcept C108597893 @default.
- W3121480359 hasConcept C119666444 @default.
- W3121480359 hasConcept C120665830 @default.
- W3121480359 hasConcept C121332964 @default.
- W3121480359 hasConcept C127413603 @default.
- W3121480359 hasConcept C130066347 @default.
- W3121480359 hasConcept C146978453 @default.
- W3121480359 hasConcept C154945302 @default.
- W3121480359 hasConcept C19269812 @default.
- W3121480359 hasConcept C205372480 @default.
- W3121480359 hasConcept C205649164 @default.
- W3121480359 hasConcept C2777007095 @default.
- W3121480359 hasConcept C39432304 @default.
- W3121480359 hasConcept C41008148 @default.
- W3121480359 hasConcept C58489278 @default.
- W3121480359 hasConcept C62520636 @default.
- W3121480359 hasConcept C62649853 @default.
- W3121480359 hasConceptScore W3121480359C108597893 @default.
- W3121480359 hasConceptScore W3121480359C119666444 @default.
- W3121480359 hasConceptScore W3121480359C120665830 @default.
- W3121480359 hasConceptScore W3121480359C121332964 @default.
- W3121480359 hasConceptScore W3121480359C127413603 @default.
- W3121480359 hasConceptScore W3121480359C130066347 @default.
- W3121480359 hasConceptScore W3121480359C146978453 @default.
- W3121480359 hasConceptScore W3121480359C154945302 @default.
- W3121480359 hasConceptScore W3121480359C19269812 @default.
- W3121480359 hasConceptScore W3121480359C205372480 @default.
- W3121480359 hasConceptScore W3121480359C205649164 @default.
- W3121480359 hasConceptScore W3121480359C2777007095 @default.
- W3121480359 hasConceptScore W3121480359C39432304 @default.
- W3121480359 hasConceptScore W3121480359C41008148 @default.
- W3121480359 hasConceptScore W3121480359C58489278 @default.
- W3121480359 hasConceptScore W3121480359C62520636 @default.
- W3121480359 hasConceptScore W3121480359C62649853 @default.
- W3121480359 hasFunder F4320306101 @default.
- W3121480359 hasFunder F4320332183 @default.
- W3121480359 hasLocation W31214803591 @default.