Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121645793> ?p ?o ?g. }
- W3121645793 endingPage "1117" @default.
- W3121645793 startingPage "1117" @default.
- W3121645793 abstract "With many successful stories, machine learning (ML) and deep learning (DL) have been widely used in our everyday lives in a number of ways. They have also been instrumental in tackling the outbreak of Coronavirus (COVID-19), which has been happening around the world. The SARS-CoV-2 virus-induced COVID-19 epidemic has spread rapidly across the world, leading to international outbreaks. The COVID-19 fight to curb the spread of the disease involves most states, companies, and scientific research institutions. In this research, we look at the Artificial Intelligence (AI)-based ML and DL methods for COVID-19 diagnosis and treatment. Furthermore, in the battle against COVID-19, we summarize the AI-based ML and DL methods and the available datasets, tools, and performance. This survey offers a detailed overview of the existing state-of-the-art methodologies for ML and DL researchers and the wider health community with descriptions of how ML and DL and data can improve the status of COVID-19, and more studies in order to avoid the outbreak of COVID-19. Details of challenges and future directions are also provided." @default.
- W3121645793 created "2021-02-01" @default.
- W3121645793 creator A5022736052 @default.
- W3121645793 creator A5029619732 @default.
- W3121645793 creator A5040833039 @default.
- W3121645793 creator A5046974711 @default.
- W3121645793 creator A5088722061 @default.
- W3121645793 date "2021-01-27" @default.
- W3121645793 modified "2023-10-02" @default.
- W3121645793 title "Machine and Deep Learning towards COVID-19 Diagnosis and Treatment: Survey, Challenges, and Future Directions" @default.
- W3121645793 cites W2084341220 @default.
- W3121645793 cites W2103869314 @default.
- W3121645793 cites W2109991441 @default.
- W3121645793 cites W2165801480 @default.
- W3121645793 cites W2605952223 @default.
- W3121645793 cites W2785947426 @default.
- W3121645793 cites W2887766329 @default.
- W3121645793 cites W2946099214 @default.
- W3121645793 cites W2979298088 @default.
- W3121645793 cites W3005879071 @default.
- W3121645793 cites W3006268938 @default.
- W3121645793 cites W3006962945 @default.
- W3121645793 cites W3009557552 @default.
- W3121645793 cites W3009609618 @default.
- W3121645793 cites W3010702679 @default.
- W3121645793 cites W3011149445 @default.
- W3121645793 cites W3011285251 @default.
- W3121645793 cites W3011414569 @default.
- W3121645793 cites W3012602559 @default.
- W3121645793 cites W3012857944 @default.
- W3121645793 cites W3012994592 @default.
- W3121645793 cites W3013601031 @default.
- W3121645793 cites W3013633552 @default.
- W3121645793 cites W3014361272 @default.
- W3121645793 cites W3016304978 @default.
- W3121645793 cites W3016488464 @default.
- W3121645793 cites W3017855299 @default.
- W3121645793 cites W3020089922 @default.
- W3121645793 cites W3020653337 @default.
- W3121645793 cites W3025948831 @default.
- W3121645793 cites W3030071125 @default.
- W3121645793 cites W3037538421 @default.
- W3121645793 cites W3037662149 @default.
- W3121645793 cites W3038197756 @default.
- W3121645793 cites W3038796705 @default.
- W3121645793 cites W3040508291 @default.
- W3121645793 cites W3041041945 @default.
- W3121645793 cites W3041809298 @default.
- W3121645793 cites W3042588953 @default.
- W3121645793 cites W3044738593 @default.
- W3121645793 cites W3045460727 @default.
- W3121645793 cites W3045975320 @default.
- W3121645793 cites W3047680495 @default.
- W3121645793 cites W3090125556 @default.
- W3121645793 cites W3090171308 @default.
- W3121645793 cites W3091940685 @default.
- W3121645793 cites W3096956107 @default.
- W3121645793 cites W3101796750 @default.
- W3121645793 cites W3102469298 @default.
- W3121645793 cites W3105081694 @default.
- W3121645793 cites W3105837102 @default.
- W3121645793 cites W3108666478 @default.
- W3121645793 cites W3109916301 @default.
- W3121645793 cites W3121286177 @default.
- W3121645793 cites W3129576291 @default.
- W3121645793 cites W3133191822 @default.
- W3121645793 cites W3140531618 @default.
- W3121645793 cites W3151357660 @default.
- W3121645793 cites W3162351260 @default.
- W3121645793 cites W3217586562 @default.
- W3121645793 cites W4229695628 @default.
- W3121645793 cites W4242879076 @default.
- W3121645793 cites W4245450138 @default.
- W3121645793 cites W4281570112 @default.
- W3121645793 cites W4292546204 @default.
- W3121645793 doi "https://doi.org/10.3390/ijerph18031117" @default.
- W3121645793 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7908539" @default.
- W3121645793 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33513984" @default.
- W3121645793 hasPublicationYear "2021" @default.
- W3121645793 type Work @default.
- W3121645793 sameAs 3121645793 @default.
- W3121645793 citedByCount "86" @default.
- W3121645793 countsByYear W31216457932021 @default.
- W3121645793 countsByYear W31216457932022 @default.
- W3121645793 countsByYear W31216457932023 @default.
- W3121645793 crossrefType "journal-article" @default.
- W3121645793 hasAuthorship W3121645793A5022736052 @default.
- W3121645793 hasAuthorship W3121645793A5029619732 @default.
- W3121645793 hasAuthorship W3121645793A5040833039 @default.
- W3121645793 hasAuthorship W3121645793A5046974711 @default.
- W3121645793 hasAuthorship W3121645793A5088722061 @default.
- W3121645793 hasBestOaLocation W31216457931 @default.
- W3121645793 hasConcept C10138342 @default.
- W3121645793 hasConcept C108583219 @default.
- W3121645793 hasConcept C116675565 @default.
- W3121645793 hasConcept C142724271 @default.
- W3121645793 hasConcept C144133560 @default.
- W3121645793 hasConcept C154945302 @default.