Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121675551> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3121675551 endingPage "105961" @default.
- W3121675551 startingPage "105961" @default.
- W3121675551 abstract "Unmanned helicopters are increasingly used for crop protection in Asia. However, the moving mechanism of droplets from helicopters, which is strongly related to the complexity of the downwash flow, is still unclear. In this study, the lattice Boltzmann method was used to simulate the flow field and movement of the droplets released from the helicopter. The application height was set to 1.5, 2.5, and 3.5 m, while the crosswind speed was varied from −3 to 3 m/s. The vortex structures and downwash flow velocity field were found to be asymmetric, and the maximum downwash flow area was observed at the left side of the helicopter. The flow structure angle was inversely proportional to the application height and followed a second-order law with respect to the crosswind speed. The yaw angle was inversely proportional to the crosswind speed and was found to be more significantly affected by the crosswind speed at higher application heights. To study the effects of the droplet size on their movement in the downwash flow, droplets with diameters of 50, 100, 200, and 400 µm were studied. The back view of the small droplets with diameter of 50 and 100 µm has a double-peak pattern. Larger droplets, which were hardly moved up by the vortex, reached much nearer distances and floated at lower altitude. When the application height was 2.5 and 3.5 m, the droplets deposited nearly symmetrically at the cross wind with opposite direction. At an application height of 1.5 m, the droplets, especially the large ones (200 and 400 µm), deposited asymmetrically at the cross wind with opposite direction. The cross wind blew from the left side due to a stream vortex near the ground on the right side of the helicopter, which carried the big droplets and move them back into the air. When the cross wind blew from the right side, large droplets (200 and 400 µm) deposited faster and concentrated near the swath, while small droplets (50 and 100 µm) were moved by the crosswind blowing from the right side with strong non-uniform spatial distribution and floated on the far left side. This finding could help to greatly reduce the spray drift. The droplet deposition rate is more likely to be affected by the quadratic term of the droplet diameter, while the coefficient of variation of deposition is affected by the quadratic terms of the droplet diameter and cross wind speed. The results of this study will be useful to analyze and optimize the downwash flow development and droplet movement/deposition of water from plant-protection unmanned aerial vehicles." @default.
- W3121675551 created "2021-02-01" @default.
- W3121675551 creator A5006190088 @default.
- W3121675551 creator A5008300437 @default.
- W3121675551 creator A5021531816 @default.
- W3121675551 creator A5055613569 @default.
- W3121675551 creator A5061876744 @default.
- W3121675551 creator A5066532422 @default.
- W3121675551 creator A5069841884 @default.
- W3121675551 creator A5091199678 @default.
- W3121675551 date "2021-02-01" @default.
- W3121675551 modified "2023-10-10" @default.
- W3121675551 title "Effects of application height and crosswind on the crop spraying performance of unmanned helicopters" @default.
- W3121675551 cites W1979838110 @default.
- W3121675551 cites W2054003574 @default.
- W3121675551 cites W2082006552 @default.
- W3121675551 cites W2085445206 @default.
- W3121675551 cites W2093618414 @default.
- W3121675551 cites W2117242079 @default.
- W3121675551 cites W2126148984 @default.
- W3121675551 cites W2809691756 @default.
- W3121675551 cites W2892373994 @default.
- W3121675551 cites W2909379823 @default.
- W3121675551 cites W2921030256 @default.
- W3121675551 cites W2949197842 @default.
- W3121675551 cites W2951337637 @default.
- W3121675551 cites W2979557385 @default.
- W3121675551 cites W2981118055 @default.
- W3121675551 cites W3014611138 @default.
- W3121675551 cites W3024341809 @default.
- W3121675551 doi "https://doi.org/10.1016/j.compag.2020.105961" @default.
- W3121675551 hasPublicationYear "2021" @default.
- W3121675551 type Work @default.
- W3121675551 sameAs 3121675551 @default.
- W3121675551 citedByCount "12" @default.
- W3121675551 countsByYear W31216755512021 @default.
- W3121675551 countsByYear W31216755512022 @default.
- W3121675551 countsByYear W31216755512023 @default.
- W3121675551 crossrefType "journal-article" @default.
- W3121675551 hasAuthorship W3121675551A5006190088 @default.
- W3121675551 hasAuthorship W3121675551A5008300437 @default.
- W3121675551 hasAuthorship W3121675551A5021531816 @default.
- W3121675551 hasAuthorship W3121675551A5055613569 @default.
- W3121675551 hasAuthorship W3121675551A5061876744 @default.
- W3121675551 hasAuthorship W3121675551A5066532422 @default.
- W3121675551 hasAuthorship W3121675551A5069841884 @default.
- W3121675551 hasAuthorship W3121675551A5091199678 @default.
- W3121675551 hasConcept C121332964 @default.
- W3121675551 hasConcept C127413603 @default.
- W3121675551 hasConcept C13393347 @default.
- W3121675551 hasConcept C140820882 @default.
- W3121675551 hasConcept C146978453 @default.
- W3121675551 hasConcept C153294291 @default.
- W3121675551 hasConcept C182748727 @default.
- W3121675551 hasConcept C196558001 @default.
- W3121675551 hasConcept C202685678 @default.
- W3121675551 hasConcept C2776911258 @default.
- W3121675551 hasConcept C38349280 @default.
- W3121675551 hasConcept C39432304 @default.
- W3121675551 hasConcept C57879066 @default.
- W3121675551 hasConcept C91586092 @default.
- W3121675551 hasConcept C95082708 @default.
- W3121675551 hasConceptScore W3121675551C121332964 @default.
- W3121675551 hasConceptScore W3121675551C127413603 @default.
- W3121675551 hasConceptScore W3121675551C13393347 @default.
- W3121675551 hasConceptScore W3121675551C140820882 @default.
- W3121675551 hasConceptScore W3121675551C146978453 @default.
- W3121675551 hasConceptScore W3121675551C153294291 @default.
- W3121675551 hasConceptScore W3121675551C182748727 @default.
- W3121675551 hasConceptScore W3121675551C196558001 @default.
- W3121675551 hasConceptScore W3121675551C202685678 @default.
- W3121675551 hasConceptScore W3121675551C2776911258 @default.
- W3121675551 hasConceptScore W3121675551C38349280 @default.
- W3121675551 hasConceptScore W3121675551C39432304 @default.
- W3121675551 hasConceptScore W3121675551C57879066 @default.
- W3121675551 hasConceptScore W3121675551C91586092 @default.
- W3121675551 hasConceptScore W3121675551C95082708 @default.
- W3121675551 hasFunder F4320321001 @default.
- W3121675551 hasFunder F4320324784 @default.
- W3121675551 hasLocation W31216755511 @default.
- W3121675551 hasOpenAccess W3121675551 @default.
- W3121675551 hasPrimaryLocation W31216755511 @default.
- W3121675551 hasRelatedWork W1500440335 @default.
- W3121675551 hasRelatedWork W1531601525 @default.
- W3121675551 hasRelatedWork W2017313715 @default.
- W3121675551 hasRelatedWork W2103220114 @default.
- W3121675551 hasRelatedWork W2268030220 @default.
- W3121675551 hasRelatedWork W2376785470 @default.
- W3121675551 hasRelatedWork W2768247318 @default.
- W3121675551 hasRelatedWork W3121675551 @default.
- W3121675551 hasRelatedWork W3183948672 @default.
- W3121675551 hasRelatedWork W4308151498 @default.
- W3121675551 hasVolume "181" @default.
- W3121675551 isParatext "false" @default.
- W3121675551 isRetracted "false" @default.
- W3121675551 magId "3121675551" @default.
- W3121675551 workType "article" @default.