Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121796306> ?p ?o ?g. }
- W3121796306 endingPage "104210" @default.
- W3121796306 startingPage "104210" @default.
- W3121796306 abstract "COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have primarily been targeted are at the highest risk from SARS-CoV-2. Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer-aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast and successful, and timely lung scans analysis. This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based on segregation of techniques and their characteristics. The study also discusses the identification of AI models and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, clinical AI design considerations will be discussed. We conclude that the design of the current existing AI models can be improved by considering comorbidity as an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings." @default.
- W3121796306 created "2021-02-01" @default.
- W3121796306 creator A5002084488 @default.
- W3121796306 creator A5003199301 @default.
- W3121796306 creator A5003311780 @default.
- W3121796306 creator A5004625703 @default.
- W3121796306 creator A5007341235 @default.
- W3121796306 creator A5008278869 @default.
- W3121796306 creator A5013046023 @default.
- W3121796306 creator A5013180579 @default.
- W3121796306 creator A5015380650 @default.
- W3121796306 creator A5015636374 @default.
- W3121796306 creator A5016750546 @default.
- W3121796306 creator A5022910916 @default.
- W3121796306 creator A5025434257 @default.
- W3121796306 creator A5031798099 @default.
- W3121796306 creator A5034739046 @default.
- W3121796306 creator A5035444159 @default.
- W3121796306 creator A5035841978 @default.
- W3121796306 creator A5042514819 @default.
- W3121796306 creator A5044251300 @default.
- W3121796306 creator A5049568141 @default.
- W3121796306 creator A5051048965 @default.
- W3121796306 creator A5053559436 @default.
- W3121796306 creator A5054857065 @default.
- W3121796306 creator A5056187822 @default.
- W3121796306 creator A5058223820 @default.
- W3121796306 creator A5058789641 @default.
- W3121796306 creator A5058971804 @default.
- W3121796306 creator A5061702412 @default.
- W3121796306 creator A5062421935 @default.
- W3121796306 creator A5062437364 @default.
- W3121796306 creator A5068542100 @default.
- W3121796306 creator A5070779518 @default.
- W3121796306 creator A5070878549 @default.
- W3121796306 creator A5071912394 @default.
- W3121796306 creator A5071959897 @default.
- W3121796306 creator A5072140760 @default.
- W3121796306 creator A5074332540 @default.
- W3121796306 creator A5076746411 @default.
- W3121796306 creator A5077263025 @default.
- W3121796306 creator A5079330804 @default.
- W3121796306 creator A5084677679 @default.
- W3121796306 creator A5084993907 @default.
- W3121796306 creator A5085952709 @default.
- W3121796306 creator A5088850977 @default.
- W3121796306 creator A5089168049 @default.
- W3121796306 creator A5089497809 @default.
- W3121796306 date "2021-03-01" @default.
- W3121796306 modified "2023-10-17" @default.
- W3121796306 title "A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence" @default.
- W3121796306 cites W1525938916 @default.
- W3121796306 cites W1600560134 @default.
- W3121796306 cites W1991113411 @default.
- W3121796306 cites W1997444694 @default.
- W3121796306 cites W1999488524 @default.
- W3121796306 cites W2001752182 @default.
- W3121796306 cites W2026699230 @default.
- W3121796306 cites W2027812057 @default.
- W3121796306 cites W2036893652 @default.
- W3121796306 cites W2044873446 @default.
- W3121796306 cites W2050163735 @default.
- W3121796306 cites W2066937625 @default.
- W3121796306 cites W2069228443 @default.
- W3121796306 cites W2073250828 @default.
- W3121796306 cites W2090118382 @default.
- W3121796306 cites W2112411253 @default.
- W3121796306 cites W2116570678 @default.
- W3121796306 cites W2135674505 @default.
- W3121796306 cites W2140639259 @default.
- W3121796306 cites W2147682506 @default.
- W3121796306 cites W2148218951 @default.
- W3121796306 cites W2152042765 @default.
- W3121796306 cites W2156827770 @default.
- W3121796306 cites W2158118659 @default.
- W3121796306 cites W2262759681 @default.
- W3121796306 cites W2277070532 @default.
- W3121796306 cites W2305392477 @default.
- W3121796306 cites W2343591754 @default.
- W3121796306 cites W2592929672 @default.
- W3121796306 cites W2612685003 @default.
- W3121796306 cites W2620241325 @default.
- W3121796306 cites W2742585132 @default.
- W3121796306 cites W2743269518 @default.
- W3121796306 cites W2750336433 @default.
- W3121796306 cites W2752627726 @default.
- W3121796306 cites W2771771284 @default.
- W3121796306 cites W2793444752 @default.
- W3121796306 cites W2804004364 @default.
- W3121796306 cites W2892915591 @default.
- W3121796306 cites W2894776090 @default.
- W3121796306 cites W2895308340 @default.
- W3121796306 cites W2900702386 @default.
- W3121796306 cites W2907386579 @default.
- W3121796306 cites W2908735595 @default.
- W3121796306 cites W2909533222 @default.
- W3121796306 cites W2909596766 @default.
- W3121796306 cites W2913618058 @default.