Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121857240> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3121857240 endingPage "129518" @default.
- W3121857240 startingPage "129518" @default.
- W3121857240 abstract "In order to improve the correct identification rate of six types of Chinese spirits using electronic nose (E-nose), the Kernel entropy component analysis (KECA) identification method combined with Genetic algorithm (GA) was proposed. Firstly, integral value (INV), relative steady-state average value (RSAV) and wavelet energy value (WEV) were extracted and employed to represent the E-nose data. Secondly, radial basis function (RBF) was selected as the kernel function, then the kernel parameter η of RBF was optimized by the matrix similarity measurement method and the GA. The corresponding optimized kernel parameter η was 16.8608 (matrix similarity measurement) and 67.9039 (GA), respectively. When the first 125 kernel entropy components were selected for Fisher discriminant analysis (FDA), the correct identification rate of FDA (KECA + FDA) combined with GA were 97.62 % and 98.81 % for the training set and testing set, respectively; the correct identification rate of FDA (KECA + FDA) combined with matrix similarity measurement were 93.58 and 91.67 % for the training set and testing set, respectively. Therefore, the kernel parameter η determined by GA was significantly better than that of matrix similarity measurement. Finally, the correct identification rate of FDA and KECA + FDA was compared, and the results of FDA were only 82.14 % and 79.92 % for the training set and testing set, respectively. The identification results of FDA were far worse than that of KECA + FDA. The KECA + FDA method combined with GA was suitable for the identification of the six types of Chinese spirits by E-nose." @default.
- W3121857240 created "2021-02-01" @default.
- W3121857240 creator A5002052281 @default.
- W3121857240 creator A5021901312 @default.
- W3121857240 creator A5047642419 @default.
- W3121857240 creator A5087325444 @default.
- W3121857240 date "2021-04-01" @default.
- W3121857240 modified "2023-10-16" @default.
- W3121857240 title "A KECA identification method based on GA for E-nose data of six kinds of Chinese spirits" @default.
- W3121857240 cites W1411409825 @default.
- W3121857240 cites W1970529538 @default.
- W3121857240 cites W1978445814 @default.
- W3121857240 cites W1991476535 @default.
- W3121857240 cites W1995957648 @default.
- W3121857240 cites W2003952658 @default.
- W3121857240 cites W2010459415 @default.
- W3121857240 cites W2012303814 @default.
- W3121857240 cites W2013066341 @default.
- W3121857240 cites W2016002604 @default.
- W3121857240 cites W2019950298 @default.
- W3121857240 cites W2020651442 @default.
- W3121857240 cites W2055764455 @default.
- W3121857240 cites W2093719697 @default.
- W3121857240 cites W2095639114 @default.
- W3121857240 cites W2185926569 @default.
- W3121857240 cites W2460311319 @default.
- W3121857240 cites W2520797469 @default.
- W3121857240 cites W2551190278 @default.
- W3121857240 cites W2583037105 @default.
- W3121857240 cites W2594347497 @default.
- W3121857240 cites W2779098947 @default.
- W3121857240 cites W2941954537 @default.
- W3121857240 cites W398397131 @default.
- W3121857240 cites W752854718 @default.
- W3121857240 doi "https://doi.org/10.1016/j.snb.2021.129518" @default.
- W3121857240 hasPublicationYear "2021" @default.
- W3121857240 type Work @default.
- W3121857240 sameAs 3121857240 @default.
- W3121857240 citedByCount "2" @default.
- W3121857240 countsByYear W31218572402022 @default.
- W3121857240 countsByYear W31218572402023 @default.
- W3121857240 crossrefType "journal-article" @default.
- W3121857240 hasAuthorship W3121857240A5002052281 @default.
- W3121857240 hasAuthorship W3121857240A5021901312 @default.
- W3121857240 hasAuthorship W3121857240A5047642419 @default.
- W3121857240 hasAuthorship W3121857240A5087325444 @default.
- W3121857240 hasConcept C114614502 @default.
- W3121857240 hasConcept C153180895 @default.
- W3121857240 hasConcept C154945302 @default.
- W3121857240 hasConcept C181367576 @default.
- W3121857240 hasConcept C23895516 @default.
- W3121857240 hasConcept C31510193 @default.
- W3121857240 hasConcept C33923547 @default.
- W3121857240 hasConcept C41008148 @default.
- W3121857240 hasConcept C74193536 @default.
- W3121857240 hasConceptScore W3121857240C114614502 @default.
- W3121857240 hasConceptScore W3121857240C153180895 @default.
- W3121857240 hasConceptScore W3121857240C154945302 @default.
- W3121857240 hasConceptScore W3121857240C181367576 @default.
- W3121857240 hasConceptScore W3121857240C23895516 @default.
- W3121857240 hasConceptScore W3121857240C31510193 @default.
- W3121857240 hasConceptScore W3121857240C33923547 @default.
- W3121857240 hasConceptScore W3121857240C41008148 @default.
- W3121857240 hasConceptScore W3121857240C74193536 @default.
- W3121857240 hasFunder F4320321001 @default.
- W3121857240 hasLocation W31218572401 @default.
- W3121857240 hasOpenAccess W3121857240 @default.
- W3121857240 hasPrimaryLocation W31218572401 @default.
- W3121857240 hasRelatedWork W2104912729 @default.
- W3121857240 hasRelatedWork W2110459882 @default.
- W3121857240 hasRelatedWork W2129407254 @default.
- W3121857240 hasRelatedWork W2151022383 @default.
- W3121857240 hasRelatedWork W2350716075 @default.
- W3121857240 hasRelatedWork W2365801610 @default.
- W3121857240 hasRelatedWork W2386228546 @default.
- W3121857240 hasRelatedWork W2538559652 @default.
- W3121857240 hasRelatedWork W2603933437 @default.
- W3121857240 hasRelatedWork W3150384742 @default.
- W3121857240 hasVolume "333" @default.
- W3121857240 isParatext "false" @default.
- W3121857240 isRetracted "false" @default.
- W3121857240 magId "3121857240" @default.
- W3121857240 workType "article" @default.