Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121859091> ?p ?o ?g. }
- W3121859091 endingPage "325" @default.
- W3121859091 startingPage "312" @default.
- W3121859091 abstract "Pathology tissue slides are taken as the gold standard for the diagnosis of most cancer diseases. Automatic pathology slide diagnosis is still a challenging task for researchers because of the high-resolution, significant morphological variation, and ambiguity between malignant and benign regions in whole slide images (WSIs). In this study, we introduce a general framework to automatically diagnose different types of WSIs via unit stochastic selection and attention fusion. For example, a unit can denote a patch in a histopathology slide or a cell in a cytopathology slide. To be specific, we first train a unit-level convolutional neural network (CNN) to perform two tasks: constructing feature extractors for the units and for estimating a unit's non-benign probability. Then we use our novel stochastic selection algorithm to choose a small subset of units that are most likely to be non-benign, referred to as the Units Of Interest (UOI), as determined by the CNN. Next, we use the attention mechanism to fuse the representations of the UOI to form a fixed-length descriptor for the WSI's diagnosis. We evaluate the proposed framework on three datasets: histological thyroid frozen sections, histological colonoscopy tissue slides, and cytological cervical pap smear slides. The framework achieves diagnosis accuracies higher than 0.8 and AUC values higher than 0.85 in all three applications. Experiments demonstrate the generality and effectiveness of the proposed framework and its potentiality for clinical applications." @default.
- W3121859091 created "2021-02-01" @default.
- W3121859091 creator A5002704866 @default.
- W3121859091 creator A5045480484 @default.
- W3121859091 creator A5047868177 @default.
- W3121859091 creator A5057277525 @default.
- W3121859091 creator A5069008709 @default.
- W3121859091 date "2021-09-01" @default.
- W3121859091 modified "2023-10-13" @default.
- W3121859091 title "Automatic whole slide pathology image diagnosis framework via unit stochastic selection and attention fusion" @default.
- W3121859091 cites W1812361043 @default.
- W3121859091 cites W1968089704 @default.
- W3121859091 cites W1978344539 @default.
- W3121859091 cites W2001739559 @default.
- W3121859091 cites W2004395458 @default.
- W3121859091 cites W2023770422 @default.
- W3121859091 cites W2026448092 @default.
- W3121859091 cites W2027107462 @default.
- W3121859091 cites W2036924016 @default.
- W3121859091 cites W2051765910 @default.
- W3121859091 cites W2099189468 @default.
- W3121859091 cites W2106798291 @default.
- W3121859091 cites W2115521901 @default.
- W3121859091 cites W2117539524 @default.
- W3121859091 cites W2148743296 @default.
- W3121859091 cites W2151608510 @default.
- W3121859091 cites W2175306913 @default.
- W3121859091 cites W22040386 @default.
- W3121859091 cites W2302302587 @default.
- W3121859091 cites W2344480160 @default.
- W3121859091 cites W2533800772 @default.
- W3121859091 cites W2556697445 @default.
- W3121859091 cites W2575285771 @default.
- W3121859091 cites W2592929672 @default.
- W3121859091 cites W2618999197 @default.
- W3121859091 cites W2700381762 @default.
- W3121859091 cites W2732701910 @default.
- W3121859091 cites W2741609385 @default.
- W3121859091 cites W2751723768 @default.
- W3121859091 cites W2769848455 @default.
- W3121859091 cites W2789275762 @default.
- W3121859091 cites W2890554424 @default.
- W3121859091 cites W2901946084 @default.
- W3121859091 cites W2906912711 @default.
- W3121859091 cites W2907462222 @default.
- W3121859091 cites W2919115771 @default.
- W3121859091 cites W2945807221 @default.
- W3121859091 cites W2956228567 @default.
- W3121859091 cites W2964090697 @default.
- W3121859091 cites W2971045153 @default.
- W3121859091 cites W316269977 @default.
- W3121859091 cites W3215186461 @default.
- W3121859091 cites W4233045210 @default.
- W3121859091 doi "https://doi.org/10.1016/j.neucom.2020.04.153" @default.
- W3121859091 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35082453" @default.
- W3121859091 hasPublicationYear "2021" @default.
- W3121859091 type Work @default.
- W3121859091 sameAs 3121859091 @default.
- W3121859091 citedByCount "16" @default.
- W3121859091 countsByYear W31218590912021 @default.
- W3121859091 countsByYear W31218590912022 @default.
- W3121859091 countsByYear W31218590912023 @default.
- W3121859091 crossrefType "journal-article" @default.
- W3121859091 hasAuthorship W3121859091A5002704866 @default.
- W3121859091 hasAuthorship W3121859091A5045480484 @default.
- W3121859091 hasAuthorship W3121859091A5047868177 @default.
- W3121859091 hasAuthorship W3121859091A5057277525 @default.
- W3121859091 hasAuthorship W3121859091A5069008709 @default.
- W3121859091 hasBestOaLocation W31218590911 @default.
- W3121859091 hasConcept C138885662 @default.
- W3121859091 hasConcept C142724271 @default.
- W3121859091 hasConcept C148483581 @default.
- W3121859091 hasConcept C153180895 @default.
- W3121859091 hasConcept C154945302 @default.
- W3121859091 hasConcept C2776401178 @default.
- W3121859091 hasConcept C2777522853 @default.
- W3121859091 hasConcept C41008148 @default.
- W3121859091 hasConcept C4144372 @default.
- W3121859091 hasConcept C41895202 @default.
- W3121859091 hasConcept C71924100 @default.
- W3121859091 hasConcept C81363708 @default.
- W3121859091 hasConcept C81917197 @default.
- W3121859091 hasConceptScore W3121859091C138885662 @default.
- W3121859091 hasConceptScore W3121859091C142724271 @default.
- W3121859091 hasConceptScore W3121859091C148483581 @default.
- W3121859091 hasConceptScore W3121859091C153180895 @default.
- W3121859091 hasConceptScore W3121859091C154945302 @default.
- W3121859091 hasConceptScore W3121859091C2776401178 @default.
- W3121859091 hasConceptScore W3121859091C2777522853 @default.
- W3121859091 hasConceptScore W3121859091C41008148 @default.
- W3121859091 hasConceptScore W3121859091C4144372 @default.
- W3121859091 hasConceptScore W3121859091C41895202 @default.
- W3121859091 hasConceptScore W3121859091C71924100 @default.
- W3121859091 hasConceptScore W3121859091C81363708 @default.
- W3121859091 hasConceptScore W3121859091C81917197 @default.
- W3121859091 hasFunder F4320332161 @default.
- W3121859091 hasLocation W31218590911 @default.
- W3121859091 hasLocation W31218590912 @default.