Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121861828> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3121861828 endingPage "012015" @default.
- W3121861828 startingPage "012015" @default.
- W3121861828 abstract "Abstract The Constant Conditional Correlation-Generalized Autoregressive Conditional Heteroscedasticity (CCC-Garch) model as one of the multivariate time series models is used to model economic variables, especially in stock price data with high volatility characteristics that result in heterogeneous variations. The higher the volatility, the higher the level of uncertainty of the stock returns that can be obtained. The CCC-Garch Multivariate model is the simplest model in its class. The principle of this model is to decompose the conditional covariance matrix into conditional standard deviation and correlation. In this study, we will discuss and determine the best model that can describe the relationship between two vector data timeseries, namely stock return data for companies engaged in mining and construction in Indonesia, namely United Tractor Tbk (UNTR) and Petrosea Tbk (PTRO) where the data is the daily stock return data for the period July 2015 to August 2020. Several models that involve modeling the mean and variance with CCC-GARCH parameterization are applied to data such as the VAR (1)-Garch (1,1), VAR (2)-Garch (1) model., 1), VAR (3) Garch (1,1) and VAR (4)-Garch (1,1). The result was that the VAR (1)-Garch (1,1) model was selected as the best model with the criteria for selecting the AICC, SBC, AIC and HQC models. The dynamic behavior of both UNTR and PTRO stock return variables is explained by Granger Causality and Impulse Response. Furthermore, the forecasting of this data was carried out for some time in which the VAR (1)-Garch (1,1) model which was selected as the best model was only suitable for forecasting in a short time." @default.
- W3121861828 created "2021-02-01" @default.
- W3121861828 creator A5002277135 @default.
- W3121861828 creator A5019818613 @default.
- W3121861828 creator A5034752166 @default.
- W3121861828 creator A5048140171 @default.
- W3121861828 creator A5058925121 @default.
- W3121861828 creator A5059964882 @default.
- W3121861828 date "2021-01-01" @default.
- W3121861828 modified "2023-09-26" @default.
- W3121861828 title "Dynamic Modeling Data Time Series By Using Constant Conditional Correlation-Generalized Autoregressive Conditional Heteroscedasticity" @default.
- W3121861828 cites W1979575715 @default.
- W3121861828 cites W1992893498 @default.
- W3121861828 cites W1995413348 @default.
- W3121861828 cites W1998968611 @default.
- W3121861828 cites W1999996900 @default.
- W3121861828 cites W2019459021 @default.
- W3121861828 cites W2029989905 @default.
- W3121861828 cites W2063593194 @default.
- W3121861828 cites W2078653703 @default.
- W3121861828 cites W2142390022 @default.
- W3121861828 cites W2997007702 @default.
- W3121861828 cites W3122942322 @default.
- W3121861828 cites W4230644069 @default.
- W3121861828 cites W4234722734 @default.
- W3121861828 doi "https://doi.org/10.1088/1742-6596/1751/1/012015" @default.
- W3121861828 hasPublicationYear "2021" @default.
- W3121861828 type Work @default.
- W3121861828 sameAs 3121861828 @default.
- W3121861828 citedByCount "1" @default.
- W3121861828 countsByYear W31218618282022 @default.
- W3121861828 crossrefType "journal-article" @default.
- W3121861828 hasAuthorship W3121861828A5002277135 @default.
- W3121861828 hasAuthorship W3121861828A5019818613 @default.
- W3121861828 hasAuthorship W3121861828A5034752166 @default.
- W3121861828 hasAuthorship W3121861828A5048140171 @default.
- W3121861828 hasAuthorship W3121861828A5058925121 @default.
- W3121861828 hasAuthorship W3121861828A5059964882 @default.
- W3121861828 hasBestOaLocation W31218618281 @default.
- W3121861828 hasConcept C101104100 @default.
- W3121861828 hasConcept C105795698 @default.
- W3121861828 hasConcept C129824826 @default.
- W3121861828 hasConcept C133029050 @default.
- W3121861828 hasConcept C149782125 @default.
- W3121861828 hasConcept C151406439 @default.
- W3121861828 hasConcept C159877910 @default.
- W3121861828 hasConcept C21430997 @default.
- W3121861828 hasConcept C23922673 @default.
- W3121861828 hasConcept C33923547 @default.
- W3121861828 hasConcept C91602232 @default.
- W3121861828 hasConceptScore W3121861828C101104100 @default.
- W3121861828 hasConceptScore W3121861828C105795698 @default.
- W3121861828 hasConceptScore W3121861828C129824826 @default.
- W3121861828 hasConceptScore W3121861828C133029050 @default.
- W3121861828 hasConceptScore W3121861828C149782125 @default.
- W3121861828 hasConceptScore W3121861828C151406439 @default.
- W3121861828 hasConceptScore W3121861828C159877910 @default.
- W3121861828 hasConceptScore W3121861828C21430997 @default.
- W3121861828 hasConceptScore W3121861828C23922673 @default.
- W3121861828 hasConceptScore W3121861828C33923547 @default.
- W3121861828 hasConceptScore W3121861828C91602232 @default.
- W3121861828 hasIssue "1" @default.
- W3121861828 hasLocation W31218618281 @default.
- W3121861828 hasOpenAccess W3121861828 @default.
- W3121861828 hasPrimaryLocation W31218618281 @default.
- W3121861828 hasRelatedWork W1532703442 @default.
- W3121861828 hasRelatedWork W1594573861 @default.
- W3121861828 hasRelatedWork W2209232670 @default.
- W3121861828 hasRelatedWork W2913923655 @default.
- W3121861828 hasRelatedWork W3104987152 @default.
- W3121861828 hasRelatedWork W3121861828 @default.
- W3121861828 hasRelatedWork W3124905861 @default.
- W3121861828 hasRelatedWork W3124924388 @default.
- W3121861828 hasRelatedWork W3127614224 @default.
- W3121861828 hasRelatedWork W619221403 @default.
- W3121861828 hasVolume "1751" @default.
- W3121861828 isParatext "false" @default.
- W3121861828 isRetracted "false" @default.
- W3121861828 magId "3121861828" @default.
- W3121861828 workType "article" @default.