Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121893821> ?p ?o ?g. }
- W3121893821 abstract "Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to mine variables of interest from available data, followed by the inclusion of those variables into an econometric framework, with the objective of estimating causal effects. Recent work highlights that, because the predictions from machine learning models are inevitably imperfect, econometric analyses based on the predicted variables are likely to suffer from bias due to measurement error. We propose a novel approach to mitigate these biases, leveraging the ensemble learning technique known as the random forest. We propose employing random forest not just for prediction, but also for generating instrumental variables to address the measurement error embedded in the prediction. The random forest algorithm performs best when comprised of a set of trees that are individually accurate in their predictions, yet which also make different mistakes, i.e., have weakly correlated prediction errors. A key observation is that these properties are closely related to the relevance and exclusion requirements of valid instrumental variables. We design a data-driven procedure to select tuples of individual trees from a random forest, in which one tree serves as the endogenous covariate and the other trees serve as its instruments. Simulation experiments demonstrate the efficacy of the proposed approach in mitigating estimation biases, and its superior performance over an alternative method (simulation-extrapolation), which has been suggested by prior work as a reasonable method of addressing the measurement error problem." @default.
- W3121893821 created "2021-02-01" @default.
- W3121893821 creator A5008688627 @default.
- W3121893821 creator A5026872292 @default.
- W3121893821 creator A5056123613 @default.
- W3121893821 creator A5057319034 @default.
- W3121893821 date "2019-01-01" @default.
- W3121893821 modified "2023-09-23" @default.
- W3121893821 title "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem" @default.
- W3121893821 cites W1631913072 @default.
- W3121893821 cites W1885924565 @default.
- W3121893821 cites W1974025513 @default.
- W3121893821 cites W1974614303 @default.
- W3121893821 cites W1979286447 @default.
- W3121893821 cites W1981651168 @default.
- W3121893821 cites W1990518057 @default.
- W3121893821 cites W1992736048 @default.
- W3121893821 cites W2006398000 @default.
- W3121893821 cites W2021255645 @default.
- W3121893821 cites W2034489756 @default.
- W3121893821 cites W2061250208 @default.
- W3121893821 cites W2068875390 @default.
- W3121893821 cites W2073195634 @default.
- W3121893821 cites W2080288369 @default.
- W3121893821 cites W2086707534 @default.
- W3121893821 cites W2092349313 @default.
- W3121893821 cites W2095175829 @default.
- W3121893821 cites W2098967410 @default.
- W3121893821 cites W2099220086 @default.
- W3121893821 cites W2109437759 @default.
- W3121893821 cites W2112352537 @default.
- W3121893821 cites W2114386340 @default.
- W3121893821 cites W2116854262 @default.
- W3121893821 cites W2129189718 @default.
- W3121893821 cites W2130486630 @default.
- W3121893821 cites W2131275242 @default.
- W3121893821 cites W2132662368 @default.
- W3121893821 cites W2137906974 @default.
- W3121893821 cites W2149353214 @default.
- W3121893821 cites W2153325306 @default.
- W3121893821 cites W2155723942 @default.
- W3121893821 cites W2157635163 @default.
- W3121893821 cites W2163162137 @default.
- W3121893821 cites W2216946510 @default.
- W3121893821 cites W2305754340 @default.
- W3121893821 cites W2315798686 @default.
- W3121893821 cites W2318460400 @default.
- W3121893821 cites W2541714257 @default.
- W3121893821 cites W2589849966 @default.
- W3121893821 cites W2611751757 @default.
- W3121893821 cites W2911964244 @default.
- W3121893821 cites W2964099165 @default.
- W3121893821 cites W3101622170 @default.
- W3121893821 cites W3121698046 @default.
- W3121893821 cites W3122061189 @default.
- W3121893821 cites W3122125470 @default.
- W3121893821 cites W3123432896 @default.
- W3121893821 cites W3126027997 @default.
- W3121893821 cites W3126059685 @default.
- W3121893821 cites W4212883601 @default.
- W3121893821 cites W4229737049 @default.
- W3121893821 cites W4232505725 @default.
- W3121893821 cites W4242238911 @default.
- W3121893821 cites W578092267 @default.
- W3121893821 doi "https://doi.org/10.2139/ssrn.3339983" @default.
- W3121893821 hasPublicationYear "2019" @default.
- W3121893821 type Work @default.
- W3121893821 sameAs 3121893821 @default.
- W3121893821 citedByCount "0" @default.
- W3121893821 crossrefType "journal-article" @default.
- W3121893821 hasAuthorship W3121893821A5008688627 @default.
- W3121893821 hasAuthorship W3121893821A5026872292 @default.
- W3121893821 hasAuthorship W3121893821A5056123613 @default.
- W3121893821 hasAuthorship W3121893821A5057319034 @default.
- W3121893821 hasBestOaLocation W31218938212 @default.
- W3121893821 hasConcept C105795698 @default.
- W3121893821 hasConcept C119857082 @default.
- W3121893821 hasConcept C124101348 @default.
- W3121893821 hasConcept C149782125 @default.
- W3121893821 hasConcept C154945302 @default.
- W3121893821 hasConcept C158600405 @default.
- W3121893821 hasConcept C169258074 @default.
- W3121893821 hasConcept C2776214188 @default.
- W3121893821 hasConcept C33923547 @default.
- W3121893821 hasConcept C41008148 @default.
- W3121893821 hasConceptScore W3121893821C105795698 @default.
- W3121893821 hasConceptScore W3121893821C119857082 @default.
- W3121893821 hasConceptScore W3121893821C124101348 @default.
- W3121893821 hasConceptScore W3121893821C149782125 @default.
- W3121893821 hasConceptScore W3121893821C154945302 @default.
- W3121893821 hasConceptScore W3121893821C158600405 @default.
- W3121893821 hasConceptScore W3121893821C169258074 @default.
- W3121893821 hasConceptScore W3121893821C2776214188 @default.
- W3121893821 hasConceptScore W3121893821C33923547 @default.
- W3121893821 hasConceptScore W3121893821C41008148 @default.
- W3121893821 hasLocation W31218938211 @default.
- W3121893821 hasLocation W31218938212 @default.
- W3121893821 hasOpenAccess W3121893821 @default.
- W3121893821 hasPrimaryLocation W31218938211 @default.
- W3121893821 hasRelatedWork W2911455822 @default.