Matches in SemOpenAlex for { <https://semopenalex.org/work/W3121898985> ?p ?o ?g. }
- W3121898985 endingPage "5" @default.
- W3121898985 startingPage "1" @default.
- W3121898985 abstract "Training Convolutional Neural Networks (CNNs) for very high resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor- and time-consuming to produce. Moreover, professional photo interpreters might have to be involved for guaranteeing the correctness of annotations. To alleviate such a burden, we propose a framework for semantic segmentation of aerial images based on incomplete annotations, where annotators are asked to label a few pixels with easy-to-draw scribbles. To exploit these sparse scribbled annotations, we propose the FEature and Spatial relaTional regulArization (FESTA) method to complement the supervised task with an unsupervised learning signal that accounts for neighbourhood structures both in spatial and feature terms." @default.
- W3121898985 created "2021-02-01" @default.
- W3121898985 creator A5005192117 @default.
- W3121898985 creator A5024379450 @default.
- W3121898985 creator A5071561639 @default.
- W3121898985 creator A5090543058 @default.
- W3121898985 creator A5090588677 @default.
- W3121898985 date "2022-01-01" @default.
- W3121898985 modified "2023-10-01" @default.
- W3121898985 title "Semantic Segmentation of Remote Sensing Images With Sparse Annotations" @default.
- W3121898985 cites W1903029394 @default.
- W3121898985 cites W1937812750 @default.
- W3121898985 cites W2025803711 @default.
- W3121898985 cites W2122111042 @default.
- W3121898985 cites W2782522152 @default.
- W3121898985 cites W2897052332 @default.
- W3121898985 cites W2901476392 @default.
- W3121898985 cites W2957972995 @default.
- W3121898985 cites W2969286067 @default.
- W3121898985 cites W2969710780 @default.
- W3121898985 cites W2985966260 @default.
- W3121898985 cites W3099110573 @default.
- W3121898985 cites W3102850314 @default.
- W3121898985 doi "https://doi.org/10.1109/lgrs.2021.3051053" @default.
- W3121898985 hasPublicationYear "2022" @default.
- W3121898985 type Work @default.
- W3121898985 sameAs 3121898985 @default.
- W3121898985 citedByCount "29" @default.
- W3121898985 countsByYear W31218989852021 @default.
- W3121898985 countsByYear W31218989852022 @default.
- W3121898985 countsByYear W31218989852023 @default.
- W3121898985 crossrefType "journal-article" @default.
- W3121898985 hasAuthorship W3121898985A5005192117 @default.
- W3121898985 hasAuthorship W3121898985A5024379450 @default.
- W3121898985 hasAuthorship W3121898985A5071561639 @default.
- W3121898985 hasAuthorship W3121898985A5090543058 @default.
- W3121898985 hasAuthorship W3121898985A5090588677 @default.
- W3121898985 hasBestOaLocation W31218989851 @default.
- W3121898985 hasConcept C104317684 @default.
- W3121898985 hasConcept C112313634 @default.
- W3121898985 hasConcept C127716648 @default.
- W3121898985 hasConcept C138885662 @default.
- W3121898985 hasConcept C153180895 @default.
- W3121898985 hasConcept C154945302 @default.
- W3121898985 hasConcept C160633673 @default.
- W3121898985 hasConcept C165696696 @default.
- W3121898985 hasConcept C185592680 @default.
- W3121898985 hasConcept C188082640 @default.
- W3121898985 hasConcept C199360897 @default.
- W3121898985 hasConcept C2776135515 @default.
- W3121898985 hasConcept C2776401178 @default.
- W3121898985 hasConcept C31972630 @default.
- W3121898985 hasConcept C38652104 @default.
- W3121898985 hasConcept C41008148 @default.
- W3121898985 hasConcept C41895202 @default.
- W3121898985 hasConcept C55439883 @default.
- W3121898985 hasConcept C55493867 @default.
- W3121898985 hasConcept C81363708 @default.
- W3121898985 hasConcept C89600930 @default.
- W3121898985 hasConceptScore W3121898985C104317684 @default.
- W3121898985 hasConceptScore W3121898985C112313634 @default.
- W3121898985 hasConceptScore W3121898985C127716648 @default.
- W3121898985 hasConceptScore W3121898985C138885662 @default.
- W3121898985 hasConceptScore W3121898985C153180895 @default.
- W3121898985 hasConceptScore W3121898985C154945302 @default.
- W3121898985 hasConceptScore W3121898985C160633673 @default.
- W3121898985 hasConceptScore W3121898985C165696696 @default.
- W3121898985 hasConceptScore W3121898985C185592680 @default.
- W3121898985 hasConceptScore W3121898985C188082640 @default.
- W3121898985 hasConceptScore W3121898985C199360897 @default.
- W3121898985 hasConceptScore W3121898985C2776135515 @default.
- W3121898985 hasConceptScore W3121898985C2776401178 @default.
- W3121898985 hasConceptScore W3121898985C31972630 @default.
- W3121898985 hasConceptScore W3121898985C38652104 @default.
- W3121898985 hasConceptScore W3121898985C41008148 @default.
- W3121898985 hasConceptScore W3121898985C41895202 @default.
- W3121898985 hasConceptScore W3121898985C55439883 @default.
- W3121898985 hasConceptScore W3121898985C55493867 @default.
- W3121898985 hasConceptScore W3121898985C81363708 @default.
- W3121898985 hasConceptScore W3121898985C89600930 @default.
- W3121898985 hasFunder F4320321114 @default.
- W3121898985 hasLocation W31218989851 @default.
- W3121898985 hasLocation W31218989852 @default.
- W3121898985 hasLocation W31218989853 @default.
- W3121898985 hasLocation W31218989854 @default.
- W3121898985 hasLocation W31218989855 @default.
- W3121898985 hasOpenAccess W3121898985 @default.
- W3121898985 hasPrimaryLocation W31218989851 @default.
- W3121898985 hasRelatedWork W121273120 @default.
- W3121898985 hasRelatedWork W1669643531 @default.
- W3121898985 hasRelatedWork W2005437358 @default.
- W3121898985 hasRelatedWork W2008656436 @default.
- W3121898985 hasRelatedWork W2023558673 @default.
- W3121898985 hasRelatedWork W2134924024 @default.
- W3121898985 hasRelatedWork W2337415362 @default.
- W3121898985 hasRelatedWork W2517104666 @default.
- W3121898985 hasRelatedWork W2740820121 @default.
- W3121898985 hasRelatedWork W4312857205 @default.