Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122007068> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3122007068 abstract "Datasets that are terabytes in size are increasingly common, but computer bottlenecks often frustrate a complete analysis of the data. While more data are better than less, diminishing returns suggest that we may not need terabytes of data to estimate a parameter or test a hypothesis. But which rows of data should we analyze, and might an arbitrary subset of rows preserve the features of the original data? This paper reviews a line of work that is grounded in theoretical computer science and numerical linear algebra, and which finds that an algorithmically desirable sketch, which is a randomly chosen subset of the data, must preserve the eigenstructure of the data, a property known as a subspace embedding. Building on this work, we study how prediction and inference can be affected by data sketching within a linear regression setup. We show that the sketching error is small compared to the sample size effect which a researcher can control. As a sketch size that is algorithmically optimal may not be suitable for prediction and inference, we use statistical arguments to provide 'inference conscious' guides to the sketch size. When appropriately implemented, an estimator that pools over different sketches can be nearly as efficient as the infeasible one using the full sample." @default.
- W3122007068 created "2021-02-01" @default.
- W3122007068 creator A5028536256 @default.
- W3122007068 creator A5056976753 @default.
- W3122007068 date "2019-01-01" @default.
- W3122007068 modified "2023-09-25" @default.
- W3122007068 title "An Econometric Perspective on Algorithmic Subsampling" @default.
- W3122007068 hasPublicationYear "2019" @default.
- W3122007068 type Work @default.
- W3122007068 sameAs 3122007068 @default.
- W3122007068 citedByCount "0" @default.
- W3122007068 crossrefType "posted-content" @default.
- W3122007068 hasAuthorship W3122007068A5028536256 @default.
- W3122007068 hasAuthorship W3122007068A5056976753 @default.
- W3122007068 hasConcept C105795698 @default.
- W3122007068 hasConcept C111919701 @default.
- W3122007068 hasConcept C11413529 @default.
- W3122007068 hasConcept C124101348 @default.
- W3122007068 hasConcept C12713177 @default.
- W3122007068 hasConcept C135598885 @default.
- W3122007068 hasConcept C154945302 @default.
- W3122007068 hasConcept C185429906 @default.
- W3122007068 hasConcept C185592680 @default.
- W3122007068 hasConcept C198531522 @default.
- W3122007068 hasConcept C199683683 @default.
- W3122007068 hasConcept C2776214188 @default.
- W3122007068 hasConcept C2779231336 @default.
- W3122007068 hasConcept C32834561 @default.
- W3122007068 hasConcept C33923547 @default.
- W3122007068 hasConcept C41008148 @default.
- W3122007068 hasConcept C43617362 @default.
- W3122007068 hasConcept C77088390 @default.
- W3122007068 hasConcept C80444323 @default.
- W3122007068 hasConceptScore W3122007068C105795698 @default.
- W3122007068 hasConceptScore W3122007068C111919701 @default.
- W3122007068 hasConceptScore W3122007068C11413529 @default.
- W3122007068 hasConceptScore W3122007068C124101348 @default.
- W3122007068 hasConceptScore W3122007068C12713177 @default.
- W3122007068 hasConceptScore W3122007068C135598885 @default.
- W3122007068 hasConceptScore W3122007068C154945302 @default.
- W3122007068 hasConceptScore W3122007068C185429906 @default.
- W3122007068 hasConceptScore W3122007068C185592680 @default.
- W3122007068 hasConceptScore W3122007068C198531522 @default.
- W3122007068 hasConceptScore W3122007068C199683683 @default.
- W3122007068 hasConceptScore W3122007068C2776214188 @default.
- W3122007068 hasConceptScore W3122007068C2779231336 @default.
- W3122007068 hasConceptScore W3122007068C32834561 @default.
- W3122007068 hasConceptScore W3122007068C33923547 @default.
- W3122007068 hasConceptScore W3122007068C41008148 @default.
- W3122007068 hasConceptScore W3122007068C43617362 @default.
- W3122007068 hasConceptScore W3122007068C77088390 @default.
- W3122007068 hasConceptScore W3122007068C80444323 @default.
- W3122007068 hasLocation W31220070681 @default.
- W3122007068 hasOpenAccess W3122007068 @default.
- W3122007068 hasPrimaryLocation W31220070681 @default.
- W3122007068 hasRelatedWork W1641106809 @default.
- W3122007068 hasRelatedWork W184185418 @default.
- W3122007068 hasRelatedWork W1960700909 @default.
- W3122007068 hasRelatedWork W2098708428 @default.
- W3122007068 hasRelatedWork W2187000089 @default.
- W3122007068 hasRelatedWork W2272111399 @default.
- W3122007068 hasRelatedWork W2346211548 @default.
- W3122007068 hasRelatedWork W2396730968 @default.
- W3122007068 hasRelatedWork W2406488743 @default.
- W3122007068 hasRelatedWork W2599969863 @default.
- W3122007068 hasRelatedWork W2621769506 @default.
- W3122007068 hasRelatedWork W2625592596 @default.
- W3122007068 hasRelatedWork W2798869818 @default.
- W3122007068 hasRelatedWork W2894867725 @default.
- W3122007068 hasRelatedWork W2900042804 @default.
- W3122007068 hasRelatedWork W2944526044 @default.
- W3122007068 hasRelatedWork W2953096735 @default.
- W3122007068 hasRelatedWork W2954040262 @default.
- W3122007068 hasRelatedWork W2954154946 @default.
- W3122007068 hasRelatedWork W3033351097 @default.
- W3122007068 isParatext "false" @default.
- W3122007068 isRetracted "false" @default.
- W3122007068 magId "3122007068" @default.
- W3122007068 workType "article" @default.