Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122015757> ?p ?o ?g. }
- W3122015757 endingPage "100197" @default.
- W3122015757 startingPage "100197" @default.
- W3122015757 abstract "Intracranial aneurysm (IA) is an enormous threat to human health, which often results in nontraumatic subarachnoid hemorrhage or dismal prognosis. Diagnosing IAs on commonly used computed tomographic angiography (CTA) examinations remains laborious and time consuming, leading to error-prone results in clinical practice, especially for small targets. In this study, we propose a fully automatic deep-learning model for IA segmentation that can be applied to CTA images. Our model, called Global Localization-based IA Network (GLIA-Net), can incorporate the global localization prior and generates the fine-grain three-dimensional segmentation. GLIA-Net is trained and evaluated on a big internal dataset (1,338 scans from six institutions) and two external datasets. Evaluations show that our model exhibits good tolerance to different settings and achieves superior performance to other models. A clinical experiment further demonstrates the clinical utility of our technique, which helps radiologists in the diagnosis of IAs." @default.
- W3122015757 created "2021-02-01" @default.
- W3122015757 creator A5001166842 @default.
- W3122015757 creator A5001722734 @default.
- W3122015757 creator A5006037415 @default.
- W3122015757 creator A5009133834 @default.
- W3122015757 creator A5010184294 @default.
- W3122015757 creator A5010560977 @default.
- W3122015757 creator A5024174928 @default.
- W3122015757 creator A5024240500 @default.
- W3122015757 creator A5024929725 @default.
- W3122015757 creator A5035519525 @default.
- W3122015757 creator A5035609529 @default.
- W3122015757 creator A5049264813 @default.
- W3122015757 creator A5080722708 @default.
- W3122015757 creator A5080894318 @default.
- W3122015757 creator A5081848769 @default.
- W3122015757 creator A5082109563 @default.
- W3122015757 creator A5084011564 @default.
- W3122015757 creator A5084279467 @default.
- W3122015757 creator A5084532455 @default.
- W3122015757 creator A5084693607 @default.
- W3122015757 creator A5087752237 @default.
- W3122015757 date "2021-02-01" @default.
- W3122015757 modified "2023-10-14" @default.
- W3122015757 title "Toward human intervention-free clinical diagnosis of intracranial aneurysm via deep neural network" @default.
- W3122015757 cites W1820889844 @default.
- W3122015757 cites W1983974072 @default.
- W3122015757 cites W2003247460 @default.
- W3122015757 cites W2024945747 @default.
- W3122015757 cites W2031771626 @default.
- W3122015757 cites W2049791419 @default.
- W3122015757 cites W2051813950 @default.
- W3122015757 cites W2085829822 @default.
- W3122015757 cites W2090624270 @default.
- W3122015757 cites W2127890285 @default.
- W3122015757 cites W2133502780 @default.
- W3122015757 cites W2136489190 @default.
- W3122015757 cites W2158698691 @default.
- W3122015757 cites W2160754664 @default.
- W3122015757 cites W2346754056 @default.
- W3122015757 cites W2532750509 @default.
- W3122015757 cites W2593013519 @default.
- W3122015757 cites W2732931556 @default.
- W3122015757 cites W2746587344 @default.
- W3122015757 cites W2799807177 @default.
- W3122015757 cites W2895926594 @default.
- W3122015757 cites W2948864380 @default.
- W3122015757 cites W2964212292 @default.
- W3122015757 cites W2964227007 @default.
- W3122015757 cites W3006125542 @default.
- W3122015757 cites W4234379583 @default.
- W3122015757 cites W639708223 @default.
- W3122015757 doi "https://doi.org/10.1016/j.patter.2020.100197" @default.
- W3122015757 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7892358" @default.
- W3122015757 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33659913" @default.
- W3122015757 hasPublicationYear "2021" @default.
- W3122015757 type Work @default.
- W3122015757 sameAs 3122015757 @default.
- W3122015757 citedByCount "17" @default.
- W3122015757 countsByYear W31220157572022 @default.
- W3122015757 countsByYear W31220157572023 @default.
- W3122015757 crossrefType "journal-article" @default.
- W3122015757 hasAuthorship W3122015757A5001166842 @default.
- W3122015757 hasAuthorship W3122015757A5001722734 @default.
- W3122015757 hasAuthorship W3122015757A5006037415 @default.
- W3122015757 hasAuthorship W3122015757A5009133834 @default.
- W3122015757 hasAuthorship W3122015757A5010184294 @default.
- W3122015757 hasAuthorship W3122015757A5010560977 @default.
- W3122015757 hasAuthorship W3122015757A5024174928 @default.
- W3122015757 hasAuthorship W3122015757A5024240500 @default.
- W3122015757 hasAuthorship W3122015757A5024929725 @default.
- W3122015757 hasAuthorship W3122015757A5035519525 @default.
- W3122015757 hasAuthorship W3122015757A5035609529 @default.
- W3122015757 hasAuthorship W3122015757A5049264813 @default.
- W3122015757 hasAuthorship W3122015757A5080722708 @default.
- W3122015757 hasAuthorship W3122015757A5080894318 @default.
- W3122015757 hasAuthorship W3122015757A5081848769 @default.
- W3122015757 hasAuthorship W3122015757A5082109563 @default.
- W3122015757 hasAuthorship W3122015757A5084011564 @default.
- W3122015757 hasAuthorship W3122015757A5084279467 @default.
- W3122015757 hasAuthorship W3122015757A5084532455 @default.
- W3122015757 hasAuthorship W3122015757A5084693607 @default.
- W3122015757 hasAuthorship W3122015757A5087752237 @default.
- W3122015757 hasBestOaLocation W31220157571 @default.
- W3122015757 hasConcept C108583219 @default.
- W3122015757 hasConcept C118552586 @default.
- W3122015757 hasConcept C119857082 @default.
- W3122015757 hasConcept C126838900 @default.
- W3122015757 hasConcept C141071460 @default.
- W3122015757 hasConcept C154945302 @default.
- W3122015757 hasConcept C2776098176 @default.
- W3122015757 hasConcept C2777736543 @default.
- W3122015757 hasConcept C2780643987 @default.
- W3122015757 hasConcept C2780665704 @default.
- W3122015757 hasConcept C2781347138 @default.
- W3122015757 hasConcept C2983858294 @default.
- W3122015757 hasConcept C2984842247 @default.