Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122056586> ?p ?o ?g. }
- W3122056586 endingPage "116405" @default.
- W3122056586 startingPage "116405" @default.
- W3122056586 abstract "Deep learning models have the potential to advance the short-term decision-making of electricity market participants and system operators by capturing the complex dependences and uncertainties of power system operation. Currently, however, the adoption of global deep learning models for multivariate energy forecasting in power systems is far behind the developments in the deep learning research field. In this context, the objectives of this study are to review recent developments in the field of probabilistic, multivariate, and multihorizon time series forecasting and empirically evaluate the performance of novel global deep learning models for forecasting wind and solar generation, electricity load, and wholesale electricity price for intraday and day-ahead time horizons. Two forecast types, deterministic and probabilistic forecasts, are studied. The evaluation data consist of real-world datasets with hourly resolution at the levels of an individual customer and regional and national electricity market bidding zones. The model evaluation criteria include achievable levels of forecasting accuracy and uncertainty risks, hyperparameter sensitivity, the effect of exogenous variables and fieldwise dataset split, and run-time efficiency factors, such as memory utilization, simulation time, electricity consumption, and convergence rate. We conclude that the performance of the global models is more beneficial for intraday forecasts of heterogeneous datasets with nonuniform patterns of time series, but can be affected by the hyperparameter sensitivity and hardware limitations with the growth of dataset dimensionality. The results can serve as a reference point for the quantitative evaluation of deep learning models for probabilistic multivariate energy forecasting in power systems. • Assessment of short-term deterministic and probabilistic energy forecasts. • Real-world datasets with electricity load and price, and wind and solar time series. • Model evaluation for memory, time, electricity consumption, and convergence rate. • Effects of exogenous variables and fieldwise dataset splitting on forecast quality. • Model performance dependence on dataset heterogeneity, hyperparameters, and hardware." @default.
- W3122056586 created "2021-02-01" @default.
- W3122056586 creator A5020284824 @default.
- W3122056586 creator A5049376408 @default.
- W3122056586 creator A5066670639 @default.
- W3122056586 creator A5067988452 @default.
- W3122056586 creator A5088254133 @default.
- W3122056586 date "2021-03-01" @default.
- W3122056586 modified "2023-10-04" @default.
- W3122056586 title "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting" @default.
- W3122056586 cites W1498436455 @default.
- W3122056586 cites W1977970167 @default.
- W3122056586 cites W2095654324 @default.
- W3122056586 cites W2117829824 @default.
- W3122056586 cites W2130715829 @default.
- W3122056586 cites W2149921893 @default.
- W3122056586 cites W2172073485 @default.
- W3122056586 cites W2275088575 @default.
- W3122056586 cites W2304821373 @default.
- W3122056586 cites W2560370080 @default.
- W3122056586 cites W2622052728 @default.
- W3122056586 cites W2625224297 @default.
- W3122056586 cites W2755104498 @default.
- W3122056586 cites W2807252330 @default.
- W3122056586 cites W2890096158 @default.
- W3122056586 cites W2890330768 @default.
- W3122056586 cites W2904031088 @default.
- W3122056586 cites W2913872388 @default.
- W3122056586 cites W2915806950 @default.
- W3122056586 cites W2922281988 @default.
- W3122056586 cites W2934271742 @default.
- W3122056586 cites W2944900364 @default.
- W3122056586 cites W2944920662 @default.
- W3122056586 cites W2953049129 @default.
- W3122056586 cites W2956195142 @default.
- W3122056586 cites W2960560113 @default.
- W3122056586 cites W2962963468 @default.
- W3122056586 cites W2979990517 @default.
- W3122056586 cites W2985452176 @default.
- W3122056586 cites W2988226917 @default.
- W3122056586 cites W2998188743 @default.
- W3122056586 cites W3037712939 @default.
- W3122056586 cites W3122046970 @default.
- W3122056586 cites W3125564657 @default.
- W3122056586 cites W4234698323 @default.
- W3122056586 cites W4292671038 @default.
- W3122056586 doi "https://doi.org/10.1016/j.apenergy.2020.116405" @default.
- W3122056586 hasPublicationYear "2021" @default.
- W3122056586 type Work @default.
- W3122056586 sameAs 3122056586 @default.
- W3122056586 citedByCount "32" @default.
- W3122056586 countsByYear W31220565862021 @default.
- W3122056586 countsByYear W31220565862022 @default.
- W3122056586 countsByYear W31220565862023 @default.
- W3122056586 crossrefType "journal-article" @default.
- W3122056586 hasAuthorship W3122056586A5020284824 @default.
- W3122056586 hasAuthorship W3122056586A5049376408 @default.
- W3122056586 hasAuthorship W3122056586A5066670639 @default.
- W3122056586 hasAuthorship W3122056586A5067988452 @default.
- W3122056586 hasAuthorship W3122056586A5088254133 @default.
- W3122056586 hasBestOaLocation W31220565861 @default.
- W3122056586 hasConcept C108583219 @default.
- W3122056586 hasConcept C119599485 @default.
- W3122056586 hasConcept C119857082 @default.
- W3122056586 hasConcept C120784921 @default.
- W3122056586 hasConcept C122282355 @default.
- W3122056586 hasConcept C127413603 @default.
- W3122056586 hasConcept C146733006 @default.
- W3122056586 hasConcept C149782125 @default.
- W3122056586 hasConcept C151730666 @default.
- W3122056586 hasConcept C154945302 @default.
- W3122056586 hasConcept C161584116 @default.
- W3122056586 hasConcept C162324750 @default.
- W3122056586 hasConcept C175444787 @default.
- W3122056586 hasConcept C206658404 @default.
- W3122056586 hasConcept C2779343474 @default.
- W3122056586 hasConcept C41008148 @default.
- W3122056586 hasConcept C49937458 @default.
- W3122056586 hasConcept C8642999 @default.
- W3122056586 hasConcept C86803240 @default.
- W3122056586 hasConcept C9233905 @default.
- W3122056586 hasConceptScore W3122056586C108583219 @default.
- W3122056586 hasConceptScore W3122056586C119599485 @default.
- W3122056586 hasConceptScore W3122056586C119857082 @default.
- W3122056586 hasConceptScore W3122056586C120784921 @default.
- W3122056586 hasConceptScore W3122056586C122282355 @default.
- W3122056586 hasConceptScore W3122056586C127413603 @default.
- W3122056586 hasConceptScore W3122056586C146733006 @default.
- W3122056586 hasConceptScore W3122056586C149782125 @default.
- W3122056586 hasConceptScore W3122056586C151730666 @default.
- W3122056586 hasConceptScore W3122056586C154945302 @default.
- W3122056586 hasConceptScore W3122056586C161584116 @default.
- W3122056586 hasConceptScore W3122056586C162324750 @default.
- W3122056586 hasConceptScore W3122056586C175444787 @default.
- W3122056586 hasConceptScore W3122056586C206658404 @default.
- W3122056586 hasConceptScore W3122056586C2779343474 @default.
- W3122056586 hasConceptScore W3122056586C41008148 @default.
- W3122056586 hasConceptScore W3122056586C49937458 @default.