Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122093103> ?p ?o ?g. }
- W3122093103 endingPage "2566" @default.
- W3122093103 startingPage "2556" @default.
- W3122093103 abstract "In patients presenting with blunt hepatic injury (BHI), the utility of CT for triage to hepatic angiography remains uncertain since simple binary assessment of contrast extravasation (CE) as being present or absent has only modest accuracy for major arterial injury on digital subtraction angiography (DSA). American Association for the Surgery of Trauma (AAST) liver injury grading is coarse and subjective, with limited diagnostic utility in this setting. Volumetric measurements of hepatic injury burden could improve prediction. We hypothesized that in a cohort of patients that underwent catheter-directed hepatic angiography following admission trauma CT, a deep learning quantitative visualization method that calculates % liver parenchymal disruption (the LPD index, or LPDI) would add value to CE assessment for prediction of major hepatic arterial injury (MHAI).This retrospective study included adult patients with BHI between 1/1/2008 and 5/1/2017 from two institutions that underwent admission trauma CT prior to hepatic angiography (n = 73). Presence (n = 41) or absence (n = 32) of MHAI (pseudoaneurysm, AVF, or active contrast extravasation on DSA) served as the outcome. Voxelwise measurements of liver laceration were derived using an existing multiscale deep learning algorithm trained on manually labeled data using cross-validation with a 75-25% split in four unseen folds. Liver volume was derived using a pre-trained whole liver segmentation algorithm. LPDI was automatically calculated for each patient by determining the percentage of liver involved by laceration. Classification and regression tree (CART) analyses were performed using a combination of automated LPDI measurements and either manually segmented CE volumes, or CE as a binary sign. Performance metrics for the decision rules were compared for significant differences with binary CE alone (the current standard of care for predicting MHAI), and the AAST grade.36% of patients (n = 26) had contrast extravasation on CT. Median [Q1-Q3] automated LPDI was 4.0% [1.0-12.1%]. 41/73 (56%) of patients had MHAI. A decision tree based on auto-LPDI and volumetric CE measurements (CEvol) had the highest accuracy (0.84, 95% CI 0.73-0.91) with significant improvement over binary CE assessment (0.68, 95% CI 0.57-0.79; p = 0.01). AAST grades at different cut-offs performed poorly for predicting MHAI, with accuracies ranging from 0.44-0.63. Decision tree analysis suggests an auto-LPDI cut-off of ≥ 12% for minimizing false negative CT exams when CE is absent or diminutive.Current CT imaging paradigms are coarse, subjective, and limited for predicting which BHIs are most likely to benefit from AE. LPDI, automated using deep learning methods, may improve objective personalized triage of BHI patients to angiography at the point of care." @default.
- W3122093103 created "2021-02-01" @default.
- W3122093103 creator A5000706567 @default.
- W3122093103 creator A5003642180 @default.
- W3122093103 creator A5026264804 @default.
- W3122093103 creator A5037307507 @default.
- W3122093103 creator A5044161737 @default.
- W3122093103 creator A5045688701 @default.
- W3122093103 creator A5049933355 @default.
- W3122093103 creator A5055328507 @default.
- W3122093103 creator A5067640436 @default.
- W3122093103 creator A5075696236 @default.
- W3122093103 creator A5077790388 @default.
- W3122093103 creator A5086706224 @default.
- W3122093103 date "2021-01-19" @default.
- W3122093103 modified "2023-10-17" @default.
- W3122093103 title "Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis" @default.
- W3122093103 cites W1722437219 @default.
- W3122093103 cites W1985446270 @default.
- W3122093103 cites W1986660539 @default.
- W3122093103 cites W1993947467 @default.
- W3122093103 cites W1999507710 @default.
- W3122093103 cites W2018225720 @default.
- W3122093103 cites W2020024705 @default.
- W3122093103 cites W2020293194 @default.
- W3122093103 cites W2058078001 @default.
- W3122093103 cites W2063085086 @default.
- W3122093103 cites W2072795119 @default.
- W3122093103 cites W2086923833 @default.
- W3122093103 cites W2090039448 @default.
- W3122093103 cites W2112993084 @default.
- W3122093103 cites W2116379158 @default.
- W3122093103 cites W2126052291 @default.
- W3122093103 cites W2139805423 @default.
- W3122093103 cites W2168163380 @default.
- W3122093103 cites W2299910905 @default.
- W3122093103 cites W2325117630 @default.
- W3122093103 cites W2328176404 @default.
- W3122093103 cites W2410201365 @default.
- W3122093103 cites W2412782625 @default.
- W3122093103 cites W2461474422 @default.
- W3122093103 cites W2526009326 @default.
- W3122093103 cites W2530091094 @default.
- W3122093103 cites W2767236661 @default.
- W3122093103 cites W2793594133 @default.
- W3122093103 cites W2920825003 @default.
- W3122093103 cites W2927794380 @default.
- W3122093103 cites W2953441164 @default.
- W3122093103 cites W2979637932 @default.
- W3122093103 cites W2982043723 @default.
- W3122093103 cites W3099336938 @default.
- W3122093103 doi "https://doi.org/10.1007/s00261-020-02892-x" @default.
- W3122093103 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8205942" @default.
- W3122093103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33469691" @default.
- W3122093103 hasPublicationYear "2021" @default.
- W3122093103 type Work @default.
- W3122093103 sameAs 3122093103 @default.
- W3122093103 citedByCount "14" @default.
- W3122093103 countsByYear W31220931032021 @default.
- W3122093103 countsByYear W31220931032022 @default.
- W3122093103 countsByYear W31220931032023 @default.
- W3122093103 crossrefType "journal-article" @default.
- W3122093103 hasAuthorship W3122093103A5000706567 @default.
- W3122093103 hasAuthorship W3122093103A5003642180 @default.
- W3122093103 hasAuthorship W3122093103A5026264804 @default.
- W3122093103 hasAuthorship W3122093103A5037307507 @default.
- W3122093103 hasAuthorship W3122093103A5044161737 @default.
- W3122093103 hasAuthorship W3122093103A5045688701 @default.
- W3122093103 hasAuthorship W3122093103A5049933355 @default.
- W3122093103 hasAuthorship W3122093103A5055328507 @default.
- W3122093103 hasAuthorship W3122093103A5067640436 @default.
- W3122093103 hasAuthorship W3122093103A5075696236 @default.
- W3122093103 hasAuthorship W3122093103A5077790388 @default.
- W3122093103 hasAuthorship W3122093103A5086706224 @default.
- W3122093103 hasBestOaLocation W31220931032 @default.
- W3122093103 hasConcept C105698618 @default.
- W3122093103 hasConcept C126322002 @default.
- W3122093103 hasConcept C126838900 @default.
- W3122093103 hasConcept C141071460 @default.
- W3122093103 hasConcept C167135981 @default.
- W3122093103 hasConcept C2776637226 @default.
- W3122093103 hasConcept C2777521253 @default.
- W3122093103 hasConcept C2778286760 @default.
- W3122093103 hasConcept C2780110798 @default.
- W3122093103 hasConcept C2780643987 @default.
- W3122093103 hasConcept C71924100 @default.
- W3122093103 hasConceptScore W3122093103C105698618 @default.
- W3122093103 hasConceptScore W3122093103C126322002 @default.
- W3122093103 hasConceptScore W3122093103C126838900 @default.
- W3122093103 hasConceptScore W3122093103C141071460 @default.
- W3122093103 hasConceptScore W3122093103C167135981 @default.
- W3122093103 hasConceptScore W3122093103C2776637226 @default.
- W3122093103 hasConceptScore W3122093103C2777521253 @default.
- W3122093103 hasConceptScore W3122093103C2778286760 @default.
- W3122093103 hasConceptScore W3122093103C2780110798 @default.
- W3122093103 hasConceptScore W3122093103C2780643987 @default.
- W3122093103 hasConceptScore W3122093103C71924100 @default.
- W3122093103 hasFunder F4320306533 @default.