Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122142027> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3122142027 abstract "Economic interactions – especially online – generate data that stimulates strategic artificial intelligence (AI), machine learning (ML) and deep learning (DL) use: by businesses for predictive analytics, process optimisation and market power; by consumers for search, decision-making and (again) market power; and by governments for detecting criminal or harmful behaviour, gathering evidence and regulation. Not all uses increase competition and efficiency. One recent concern is algorithmic collusion (AC); whether revenue management algorithms can signal and implement tacitly collusive behaviour. This paper summarises theoretical and empirical evidence, considers how specific business machine learning methods may affect AC and whether consumer and regulator algorithms can detect or solve the resulting problems. It examines the links between Internet regulation and competition/consumer protection policy.Much early ML literature concentrated programmes ‘learning’ about their environments. A simple version would predict tomorrow’s prices from historical data to set profit-maximising prices. This could involve estimating prices or costs (assuming their behavioural rules), trying to identify behavioural rules or trying to influence rivals’ learning. Here, AI includes anything from fixed rules mapping data to prices to deep neural nets, ML is AI machines that program themselves to optimise specific objectives (thus having at least one ‘hidden layer’) and DL is ML with many hidden layers. Increased depth and thus computation makes behaviour an intricate convolution of data and programme history that is less visible those who programmed the system, let alone explainable to ‘outsiders.’ If many firms use ML, learning seeks a ‘moving target’ and may fail to converge or lead to unintended consequences.Conventional AC models use simple algorithms to demonstrate behaviour consistent with collusion in models of repeated interaction. It is not inevitable or classically collusive especially without good communications. More sophisticated approaches, however, suggest that populations of even simple AI agents can learn to adopt sophisticated reward/punishment strategies that sustain profitable outcomes. This paper considers further variations taking into account e.g. the influence of size and targeting of price deviations, finite-memory or dominance elimination strategies and the difference product characteristics (durability, quality uncertainty, purchase frequency) and search services can make. Simulation results illustrate a range of classic market inefficiencies (overshoot, convergence to prices between monopoly and oligopoly, cyclic behaviour and endogenous market-sharing collusion).From the regulatory perspective, it is not clear what is illegal and what could or should be banned. This raises questions of detecting AC (e.g. by DL) and limiting its spread or consequences. We consider: i) restrictions on information available to firms; ii) constraints on the speed or size of pricing changes; iii) Coding standards e.g. to incorporate regulatory compliance in ML objectives; and iv) algorithmic detection of specified anticompetitive behaviours. For iii), we show that populations using (e.g.) likelihood-ratio policy gradient reinforcement learning are more likely to converge to collusive behaviours (tit-for-tat) when they take other firms’ learning into account and more able to shape others’ learning depending on the prevalence of AI and the topology of information." @default.
- W3122142027 created "2021-02-01" @default.
- W3122142027 creator A5050100188 @default.
- W3122142027 date "2018-01-01" @default.
- W3122142027 modified "2023-09-27" @default.
- W3122142027 title "Can Machines Learn Whether Machines Are Learning to Collude?" @default.
- W3122142027 doi "https://doi.org/10.2139/ssrn.3142109" @default.
- W3122142027 hasPublicationYear "2018" @default.
- W3122142027 type Work @default.
- W3122142027 sameAs 3122142027 @default.
- W3122142027 citedByCount "0" @default.
- W3122142027 crossrefType "journal-article" @default.
- W3122142027 hasAuthorship W3122142027A5050100188 @default.
- W3122142027 hasConcept C119857082 @default.
- W3122142027 hasConcept C121955636 @default.
- W3122142027 hasConcept C154945302 @default.
- W3122142027 hasConcept C162324750 @default.
- W3122142027 hasConcept C175444787 @default.
- W3122142027 hasConcept C18903297 @default.
- W3122142027 hasConcept C195487862 @default.
- W3122142027 hasConcept C2522767166 @default.
- W3122142027 hasConcept C2775881736 @default.
- W3122142027 hasConcept C2781127519 @default.
- W3122142027 hasConcept C2781198186 @default.
- W3122142027 hasConcept C40700 @default.
- W3122142027 hasConcept C41008148 @default.
- W3122142027 hasConcept C50644808 @default.
- W3122142027 hasConcept C79158427 @default.
- W3122142027 hasConcept C81363708 @default.
- W3122142027 hasConcept C86803240 @default.
- W3122142027 hasConcept C91306197 @default.
- W3122142027 hasConceptScore W3122142027C119857082 @default.
- W3122142027 hasConceptScore W3122142027C121955636 @default.
- W3122142027 hasConceptScore W3122142027C154945302 @default.
- W3122142027 hasConceptScore W3122142027C162324750 @default.
- W3122142027 hasConceptScore W3122142027C175444787 @default.
- W3122142027 hasConceptScore W3122142027C18903297 @default.
- W3122142027 hasConceptScore W3122142027C195487862 @default.
- W3122142027 hasConceptScore W3122142027C2522767166 @default.
- W3122142027 hasConceptScore W3122142027C2775881736 @default.
- W3122142027 hasConceptScore W3122142027C2781127519 @default.
- W3122142027 hasConceptScore W3122142027C2781198186 @default.
- W3122142027 hasConceptScore W3122142027C40700 @default.
- W3122142027 hasConceptScore W3122142027C41008148 @default.
- W3122142027 hasConceptScore W3122142027C50644808 @default.
- W3122142027 hasConceptScore W3122142027C79158427 @default.
- W3122142027 hasConceptScore W3122142027C81363708 @default.
- W3122142027 hasConceptScore W3122142027C86803240 @default.
- W3122142027 hasConceptScore W3122142027C91306197 @default.
- W3122142027 hasLocation W31221420271 @default.
- W3122142027 hasOpenAccess W3122142027 @default.
- W3122142027 hasPrimaryLocation W31221420271 @default.
- W3122142027 hasRelatedWork W148460562 @default.
- W3122142027 hasRelatedWork W1605228868 @default.
- W3122142027 hasRelatedWork W1999377152 @default.
- W3122142027 hasRelatedWork W2113436819 @default.
- W3122142027 hasRelatedWork W2141298235 @default.
- W3122142027 hasRelatedWork W2225447437 @default.
- W3122142027 hasRelatedWork W2526647779 @default.
- W3122142027 hasRelatedWork W2768489243 @default.
- W3122142027 hasRelatedWork W286957315 @default.
- W3122142027 hasRelatedWork W3010984475 @default.
- W3122142027 hasRelatedWork W3013810533 @default.
- W3122142027 hasRelatedWork W3102306772 @default.
- W3122142027 hasRelatedWork W3122774160 @default.
- W3122142027 hasRelatedWork W3123832094 @default.
- W3122142027 hasRelatedWork W3124297261 @default.
- W3122142027 hasRelatedWork W3125683845 @default.
- W3122142027 hasRelatedWork W3142592866 @default.
- W3122142027 hasRelatedWork W3167633050 @default.
- W3122142027 hasRelatedWork W3203451138 @default.
- W3122142027 hasRelatedWork W3212317860 @default.
- W3122142027 isParatext "false" @default.
- W3122142027 isRetracted "false" @default.
- W3122142027 magId "3122142027" @default.
- W3122142027 workType "article" @default.