Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122182876> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3122182876 abstract "In contrast to a posterior analysis given a particular sampling model, posterior model probabilities in the context of model uncertainty are typically rather sensitive to the specification of the prior. In particular, 'diffuse' priors on model-specific parameters can lead to quite unexpected consequences. Here we focus on the practically relevant situation where we need to entertain a (large) number of sampling models and we have (or wish to use) little or no subjective prior information. We aim at providing an 'automatic' or 'benchmark' prior structure that can be used in such cases. We focus on the Normal linear regression model with uncertainty in the choice of regressors. We propose a partly noninformative prior structure related to a Natural Conjugate g-prior specification, where the amount of subjective information requested from the user is limited to the choice of a single scalar hyperparameter g[0j]. The consequences of different choices for g[0j] are examined. We investigate theoretical properties, such as consistency of the implied Bayesian procedure. Links with classical information criteria are provided. In addition, we examine the finite sample implications of several choices of g[0j] in a simulation study. The use of the MC^3 algorithm of Madigan and York (1995), combined with efficient coding in Fortran, makes it feasible to conduct large simulations. In addition to posterior criteria, we shall also compare the predictive performance of different priors. A classic example concerning the economics of crime will also be provided and contrasted with results in the literature. The main findings of the paper will lead us to propose a 'benchmark' prior specification in a linear regression context with model uncertainty." @default.
- W3122182876 created "2021-02-01" @default.
- W3122182876 creator A5003710494 @default.
- W3122182876 creator A5041071587 @default.
- W3122182876 creator A5085141989 @default.
- W3122182876 date "1998-04-02" @default.
- W3122182876 modified "2023-09-27" @default.
- W3122182876 title "Benchmark Priors for Bayesian Model Averaging" @default.
- W3122182876 hasPublicationYear "1998" @default.
- W3122182876 type Work @default.
- W3122182876 sameAs 3122182876 @default.
- W3122182876 citedByCount "4" @default.
- W3122182876 countsByYear W31221828762015 @default.
- W3122182876 crossrefType "posted-content" @default.
- W3122182876 hasAuthorship W3122182876A5003710494 @default.
- W3122182876 hasAuthorship W3122182876A5041071587 @default.
- W3122182876 hasAuthorship W3122182876A5085141989 @default.
- W3122182876 hasConcept C107673813 @default.
- W3122182876 hasConcept C119857082 @default.
- W3122182876 hasConcept C13280743 @default.
- W3122182876 hasConcept C149782125 @default.
- W3122182876 hasConcept C151730666 @default.
- W3122182876 hasConcept C154945302 @default.
- W3122182876 hasConcept C160234255 @default.
- W3122182876 hasConcept C177769412 @default.
- W3122182876 hasConcept C185798385 @default.
- W3122182876 hasConcept C205649164 @default.
- W3122182876 hasConcept C2776436953 @default.
- W3122182876 hasConcept C2779343474 @default.
- W3122182876 hasConcept C33923547 @default.
- W3122182876 hasConcept C41008148 @default.
- W3122182876 hasConcept C57830394 @default.
- W3122182876 hasConcept C8642999 @default.
- W3122182876 hasConcept C86803240 @default.
- W3122182876 hasConceptScore W3122182876C107673813 @default.
- W3122182876 hasConceptScore W3122182876C119857082 @default.
- W3122182876 hasConceptScore W3122182876C13280743 @default.
- W3122182876 hasConceptScore W3122182876C149782125 @default.
- W3122182876 hasConceptScore W3122182876C151730666 @default.
- W3122182876 hasConceptScore W3122182876C154945302 @default.
- W3122182876 hasConceptScore W3122182876C160234255 @default.
- W3122182876 hasConceptScore W3122182876C177769412 @default.
- W3122182876 hasConceptScore W3122182876C185798385 @default.
- W3122182876 hasConceptScore W3122182876C205649164 @default.
- W3122182876 hasConceptScore W3122182876C2776436953 @default.
- W3122182876 hasConceptScore W3122182876C2779343474 @default.
- W3122182876 hasConceptScore W3122182876C33923547 @default.
- W3122182876 hasConceptScore W3122182876C41008148 @default.
- W3122182876 hasConceptScore W3122182876C57830394 @default.
- W3122182876 hasConceptScore W3122182876C8642999 @default.
- W3122182876 hasConceptScore W3122182876C86803240 @default.
- W3122182876 hasLocation W31221828761 @default.
- W3122182876 hasOpenAccess W3122182876 @default.
- W3122182876 hasPrimaryLocation W31221828761 @default.
- W3122182876 hasRelatedWork W2037712690 @default.
- W3122182876 hasRelatedWork W2081192347 @default.
- W3122182876 hasRelatedWork W2143933215 @default.
- W3122182876 hasRelatedWork W2159666858 @default.
- W3122182876 hasRelatedWork W2229010591 @default.
- W3122182876 hasRelatedWork W2240033217 @default.
- W3122182876 hasRelatedWork W2745668582 @default.
- W3122182876 hasRelatedWork W2755730676 @default.
- W3122182876 hasRelatedWork W2889117551 @default.
- W3122182876 hasRelatedWork W2891345567 @default.
- W3122182876 hasRelatedWork W2968217777 @default.
- W3122182876 hasRelatedWork W3021952014 @default.
- W3122182876 hasRelatedWork W3096400727 @default.
- W3122182876 hasRelatedWork W3102763196 @default.
- W3122182876 hasRelatedWork W3104551718 @default.
- W3122182876 hasRelatedWork W3123364034 @default.
- W3122182876 hasRelatedWork W3124833584 @default.
- W3122182876 hasRelatedWork W593678176 @default.
- W3122182876 hasRelatedWork W2342019685 @default.
- W3122182876 hasRelatedWork W2736270273 @default.
- W3122182876 isParatext "false" @default.
- W3122182876 isRetracted "false" @default.
- W3122182876 magId "3122182876" @default.
- W3122182876 workType "article" @default.