Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122300939> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3122300939 abstract "This paper develops a general approximation scheme, henceforth called a hybrid asymptotic expansion scheme for the valuation of multi-factor European path-independent derivatives. Specifically, we apply it to pricing long-term currency options under a market model of interest rates and a general diffusion stochastic volatility model with jumps of spot exchange rates. Our scheme is very effective for a type of models in which there exist correlations among all the factors whose dynamics are not necessarily affine nor even Markovian so long as the randomness is generated by Brownian motions. It can also handle models that include jump components under an assumption of their independence of the other random variables when the characteristic functions for the jump parts can be analytically obtained. An asymptotic expansion approach provides a closed-form approximation formula for their values, which can be calculated in a moment and thus can be used for calibration or for an explicit approximation of Greeks of options. Moreover, this scheme develops Fourier transform method with an asymptotic expansion as well as with closed-form characteristic functions obtainable in parts of a model. It also introduces a characteristic-function-based Monte Carlo simulation method with the asymptotic expansion as a control variable in order to make full use of analytical approximations by the asymptotic expansion and of the closed-form characteristic functions. Finally, a series of numerical examples shows the validity of our scheme. This paper develops a general approximation scheme, henceforth called a hybrid asymptotic expansion scheme for valuation of European derivatives. Specifically, we apply it to pricing longterm currency options under a market model of interest rates and a general stochastic volatility model with jumps of spot exchange rates. Our scheme is very effective for models which admits correlations among all factors whose dynamics are not necessarily affine nor even Markovian so long as the randomness is generated by Brownian motions. It can also handle jump components under an assumption of their independence of the other random variables when the characteristic functions for the jump parts can be analytically obtained. An asymptotic expansion approach provides a closed-form approximation formula calculated instantly and thus can be used for calibration or explicit approximations of Greeks. Moreover, this scheme develops Fourier transform method with an asymptotic expansion as well as with closed-form characteristic functions obtainable in parts of a model. It also introduces a characteristic-function-based Monte Carlo simulation method with the asymptotic expansion as a control variable to make full use of analytical approximations by the asymptotic expansion and the closed-form characteristic functions. Finally, a series of numerical examples shows the validity of our scheme." @default.
- W3122300939 created "2021-02-01" @default.
- W3122300939 creator A5063617768 @default.
- W3122300939 creator A5067590340 @default.
- W3122300939 date "2008-04-01" @default.
- W3122300939 modified "2023-10-02" @default.
- W3122300939 title "A Hybrid Asymptotic Expansion Scheme: an Application to Long-term Currency Options" @default.
- W3122300939 hasPublicationYear "2008" @default.
- W3122300939 type Work @default.
- W3122300939 sameAs 3122300939 @default.
- W3122300939 citedByCount "0" @default.
- W3122300939 crossrefType "posted-content" @default.
- W3122300939 hasAuthorship W3122300939A5063617768 @default.
- W3122300939 hasAuthorship W3122300939A5067590340 @default.
- W3122300939 hasConcept C105795698 @default.
- W3122300939 hasConcept C11683690 @default.
- W3122300939 hasConcept C125112378 @default.
- W3122300939 hasConcept C126255220 @default.
- W3122300939 hasConcept C134306372 @default.
- W3122300939 hasConcept C149782125 @default.
- W3122300939 hasConcept C151205565 @default.
- W3122300939 hasConcept C158946198 @default.
- W3122300939 hasConcept C162324750 @default.
- W3122300939 hasConcept C175025494 @default.
- W3122300939 hasConcept C186080144 @default.
- W3122300939 hasConcept C19736811 @default.
- W3122300939 hasConcept C28826006 @default.
- W3122300939 hasConcept C33923547 @default.
- W3122300939 hasConcept C556758197 @default.
- W3122300939 hasConcept C85393063 @default.
- W3122300939 hasConcept C91602232 @default.
- W3122300939 hasConceptScore W3122300939C105795698 @default.
- W3122300939 hasConceptScore W3122300939C11683690 @default.
- W3122300939 hasConceptScore W3122300939C125112378 @default.
- W3122300939 hasConceptScore W3122300939C126255220 @default.
- W3122300939 hasConceptScore W3122300939C134306372 @default.
- W3122300939 hasConceptScore W3122300939C149782125 @default.
- W3122300939 hasConceptScore W3122300939C151205565 @default.
- W3122300939 hasConceptScore W3122300939C158946198 @default.
- W3122300939 hasConceptScore W3122300939C162324750 @default.
- W3122300939 hasConceptScore W3122300939C175025494 @default.
- W3122300939 hasConceptScore W3122300939C186080144 @default.
- W3122300939 hasConceptScore W3122300939C19736811 @default.
- W3122300939 hasConceptScore W3122300939C28826006 @default.
- W3122300939 hasConceptScore W3122300939C33923547 @default.
- W3122300939 hasConceptScore W3122300939C556758197 @default.
- W3122300939 hasConceptScore W3122300939C85393063 @default.
- W3122300939 hasConceptScore W3122300939C91602232 @default.
- W3122300939 hasLocation W31223009391 @default.
- W3122300939 hasOpenAccess W3122300939 @default.
- W3122300939 hasPrimaryLocation W31223009391 @default.
- W3122300939 hasRelatedWork W1528605264 @default.
- W3122300939 hasRelatedWork W1584256714 @default.
- W3122300939 hasRelatedWork W1812958122 @default.
- W3122300939 hasRelatedWork W1975905582 @default.
- W3122300939 hasRelatedWork W1993762957 @default.
- W3122300939 hasRelatedWork W2167372101 @default.
- W3122300939 hasRelatedWork W2698378614 @default.
- W3122300939 hasRelatedWork W2744058252 @default.
- W3122300939 hasRelatedWork W2797776389 @default.
- W3122300939 hasRelatedWork W3099937413 @default.
- W3122300939 hasRelatedWork W3104465214 @default.
- W3122300939 hasRelatedWork W3107100636 @default.
- W3122300939 hasRelatedWork W3121208517 @default.
- W3122300939 hasRelatedWork W3122009537 @default.
- W3122300939 hasRelatedWork W3123816805 @default.
- W3122300939 hasRelatedWork W3125401680 @default.
- W3122300939 hasRelatedWork W3129371317 @default.
- W3122300939 hasRelatedWork W3133928737 @default.
- W3122300939 hasRelatedWork W3143470420 @default.
- W3122300939 hasRelatedWork W2105827185 @default.
- W3122300939 isParatext "false" @default.
- W3122300939 isRetracted "false" @default.
- W3122300939 magId "3122300939" @default.
- W3122300939 workType "article" @default.