Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122321838> ?p ?o ?g. }
- W3122321838 endingPage "102020" @default.
- W3122321838 startingPage "102020" @default.
- W3122321838 abstract "Artificial intelligence is a broad field that comprises a wide range of techniques, where deep learning is presently the one with the most impact. Moreover, the medical field is an area where data both complex and massive and the importance of the decisions made by doctors make it one of the fields in which deep learning techniques can have the greatest impact. A systematic review following the Cochrane recommendations with a multidisciplinary team comprised of physicians, research methodologists and computer scientists has been conducted. This survey aims to identify the main therapeutic areas and the deep learning models used for diagnosis and treatment tasks. The most relevant databases included were MedLine, Embase, Cochrane Central, Astrophysics Data System, Europe PubMed Central, Web of Science and Science Direct. An inclusion and exclusion criteria were defined and applied in the first and second peer review screening. A set of quality criteria was developed to select the papers obtained after the second screening. Finally, 126 studies from the initial 3493 papers were selected and 64 were described. Results show that the number of publications on deep learning in medicine is increasing every year. Also, convolutional neural networks are the most widely used models and the most developed area is oncology where they are used mainly for image analysis." @default.
- W3122321838 created "2021-02-01" @default.
- W3122321838 creator A5008958637 @default.
- W3122321838 creator A5015013304 @default.
- W3122321838 creator A5028320295 @default.
- W3122321838 creator A5057465086 @default.
- W3122321838 creator A5068322693 @default.
- W3122321838 date "2021-02-01" @default.
- W3122321838 modified "2023-10-16" @default.
- W3122321838 title "A survey of deep learning models in medical therapeutic areas" @default.
- W3122321838 cites W1582640985 @default.
- W3122321838 cites W1983364832 @default.
- W3122321838 cites W2005501262 @default.
- W3122321838 cites W2058397971 @default.
- W3122321838 cites W2064675550 @default.
- W3122321838 cites W2110485445 @default.
- W3122321838 cites W2119018277 @default.
- W3122321838 cites W2126598020 @default.
- W3122321838 cites W2147800946 @default.
- W3122321838 cites W2161336914 @default.
- W3122321838 cites W2169624977 @default.
- W3122321838 cites W2323929895 @default.
- W3122321838 cites W2344912502 @default.
- W3122321838 cites W2404618390 @default.
- W3122321838 cites W2493683088 @default.
- W3122321838 cites W2561981131 @default.
- W3122321838 cites W2572512422 @default.
- W3122321838 cites W2575657035 @default.
- W3122321838 cites W2589074029 @default.
- W3122321838 cites W2592929672 @default.
- W3122321838 cites W2620578070 @default.
- W3122321838 cites W2620818159 @default.
- W3122321838 cites W2625749968 @default.
- W3122321838 cites W2664267452 @default.
- W3122321838 cites W2744692634 @default.
- W3122321838 cites W2748890376 @default.
- W3122321838 cites W2751159520 @default.
- W3122321838 cites W2752558629 @default.
- W3122321838 cites W2759933999 @default.
- W3122321838 cites W2767381938 @default.
- W3122321838 cites W2772152444 @default.
- W3122321838 cites W2773708607 @default.
- W3122321838 cites W2779664341 @default.
- W3122321838 cites W2783059813 @default.
- W3122321838 cites W2789532252 @default.
- W3122321838 cites W2789863594 @default.
- W3122321838 cites W2790012507 @default.
- W3122321838 cites W2794977498 @default.
- W3122321838 cites W2796256498 @default.
- W3122321838 cites W2796409016 @default.
- W3122321838 cites W2799742832 @default.
- W3122321838 cites W2800452457 @default.
- W3122321838 cites W2800850596 @default.
- W3122321838 cites W2801606501 @default.
- W3122321838 cites W2803469628 @default.
- W3122321838 cites W2806717565 @default.
- W3122321838 cites W2886848602 @default.
- W3122321838 cites W2888833916 @default.
- W3122321838 cites W2900426044 @default.
- W3122321838 cites W2905036906 @default.
- W3122321838 cites W2905215565 @default.
- W3122321838 cites W2916800028 @default.
- W3122321838 cites W2919115771 @default.
- W3122321838 cites W2922297682 @default.
- W3122321838 cites W2944052783 @default.
- W3122321838 cites W2945248062 @default.
- W3122321838 cites W2946916415 @default.
- W3122321838 cites W2951965145 @default.
- W3122321838 cites W2952436003 @default.
- W3122321838 cites W2960369238 @default.
- W3122321838 cites W2962884052 @default.
- W3122321838 cites W2963202012 @default.
- W3122321838 cites W2971828568 @default.
- W3122321838 cites W2984306354 @default.
- W3122321838 cites W2994725725 @default.
- W3122321838 cites W3010861578 @default.
- W3122321838 cites W3022162717 @default.
- W3122321838 cites W3035442710 @default.
- W3122321838 cites W3036632634 @default.
- W3122321838 cites W3038613619 @default.
- W3122321838 cites W3039327658 @default.
- W3122321838 cites W3099916295 @default.
- W3122321838 cites W3101386228 @default.
- W3122321838 cites W3105282616 @default.
- W3122321838 doi "https://doi.org/10.1016/j.artmed.2021.102020" @default.
- W3122321838 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33581832" @default.
- W3122321838 hasPublicationYear "2021" @default.
- W3122321838 type Work @default.
- W3122321838 sameAs 3122321838 @default.
- W3122321838 citedByCount "22" @default.
- W3122321838 countsByYear W31223218382021 @default.
- W3122321838 countsByYear W31223218382022 @default.
- W3122321838 countsByYear W31223218382023 @default.
- W3122321838 crossrefType "journal-article" @default.
- W3122321838 hasAuthorship W3122321838A5008958637 @default.
- W3122321838 hasAuthorship W3122321838A5015013304 @default.
- W3122321838 hasAuthorship W3122321838A5028320295 @default.
- W3122321838 hasAuthorship W3122321838A5057465086 @default.