Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122458082> ?p ?o ?g. }
- W3122458082 endingPage "18208" @default.
- W3122458082 startingPage "18195" @default.
- W3122458082 abstract "High spatial resolution (HSR) imagery scene classification has become a hot research topic in remote sensing. Scene classification method based on the handcrafted features, such as the bag-of-visual-words (BoVW) model, describes an image by extracting local features of the scene and mapping them to the dictionary space, but usually uses a shallow structure and loses the spatial distribution characteristics of the scene. The method based on deep learning extracts hierarchical features to describe the scene, which can maintain the spatial position information well. However, deep features in different levels have scale recognition restrictions for multi-scale ground objects, and cannot understand complex scenes well. In this paper, the multi-level convolutional pyramid semantic fusion (MCPSF) framework is proposed for HSR imagery scene classification. Differing from previous scene classification methods, which integrate the feature of different levels directly, of which the fusion features have large differences in both sparsity and eigenvalue magnitude, MCPSF integrates multi-level semantic features extracted by BoVW model and convolutional neural network (CNN) model. In MCPSF, two convolution pyramid feature expression strategies are proposed to enhance the ability of capturing multi-scale land objects, i.e., local and convolutional pyramid based BoVW (LCPB) model and local and convolutional pyramid based pooling-stretched (LCPP) model. The effectiveness of the proposed method is verified on 21-class UC Merced (UCM) dataset and 30-class Aerial Image Dataset (AID). The framework was also transferred toa case study of scene annotation in Wuhan. The proposed framework significantly improves the performance when compared with other state-of-the-art methods." @default.
- W3122458082 created "2021-02-01" @default.
- W3122458082 creator A5029093505 @default.
- W3122458082 creator A5077946476 @default.
- W3122458082 creator A5079862010 @default.
- W3122458082 date "2021-01-01" @default.
- W3122458082 modified "2023-10-12" @default.
- W3122458082 title "A Multi-Level Convolution Pyramid Semantic Fusion Framework for High-Resolution Remote Sensing Image Scene Classification and Annotation" @default.
- W3122458082 cites W1526295910 @default.
- W3122458082 cites W1980038761 @default.
- W3122458082 cites W1983364832 @default.
- W3122458082 cites W2001123951 @default.
- W3122458082 cites W2006603039 @default.
- W3122458082 cites W2027922120 @default.
- W3122458082 cites W2036718463 @default.
- W3122458082 cites W2086141297 @default.
- W3122458082 cites W2098676252 @default.
- W3122458082 cites W2103079830 @default.
- W3122458082 cites W2107640820 @default.
- W3122458082 cites W2115799903 @default.
- W3122458082 cites W2121915926 @default.
- W3122458082 cites W2134731454 @default.
- W3122458082 cites W2144407188 @default.
- W3122458082 cites W2151103935 @default.
- W3122458082 cites W2156575832 @default.
- W3122458082 cites W2163352848 @default.
- W3122458082 cites W2253590344 @default.
- W3122458082 cites W2268837224 @default.
- W3122458082 cites W2294802479 @default.
- W3122458082 cites W2303475025 @default.
- W3122458082 cites W2308318555 @default.
- W3122458082 cites W2344884875 @default.
- W3122458082 cites W2347115704 @default.
- W3122458082 cites W2538244214 @default.
- W3122458082 cites W2565639579 @default.
- W3122458082 cites W2607558879 @default.
- W3122458082 cites W2620429297 @default.
- W3122458082 cites W2621526417 @default.
- W3122458082 cites W2626107033 @default.
- W3122458082 cites W2727875856 @default.
- W3122458082 cites W2740144340 @default.
- W3122458082 cites W2762941833 @default.
- W3122458082 cites W2795674590 @default.
- W3122458082 cites W2829067510 @default.
- W3122458082 cites W2911305027 @default.
- W3122458082 cites W2912089046 @default.
- W3122458082 cites W2919115771 @default.
- W3122458082 cites W3103856189 @default.
- W3122458082 cites W3105577662 @default.
- W3122458082 cites W946771493 @default.
- W3122458082 doi "https://doi.org/10.1109/access.2021.3052977" @default.
- W3122458082 hasPublicationYear "2021" @default.
- W3122458082 type Work @default.
- W3122458082 sameAs 3122458082 @default.
- W3122458082 citedByCount "15" @default.
- W3122458082 countsByYear W31224580822021 @default.
- W3122458082 countsByYear W31224580822022 @default.
- W3122458082 countsByYear W31224580822023 @default.
- W3122458082 crossrefType "journal-article" @default.
- W3122458082 hasAuthorship W3122458082A5029093505 @default.
- W3122458082 hasAuthorship W3122458082A5077946476 @default.
- W3122458082 hasAuthorship W3122458082A5079862010 @default.
- W3122458082 hasBestOaLocation W31224580821 @default.
- W3122458082 hasConcept C115961682 @default.
- W3122458082 hasConcept C127313418 @default.
- W3122458082 hasConcept C138268822 @default.
- W3122458082 hasConcept C142575187 @default.
- W3122458082 hasConcept C153180895 @default.
- W3122458082 hasConcept C154945302 @default.
- W3122458082 hasConcept C205372480 @default.
- W3122458082 hasConcept C2524010 @default.
- W3122458082 hasConcept C2776321320 @default.
- W3122458082 hasConcept C31972630 @default.
- W3122458082 hasConcept C33923547 @default.
- W3122458082 hasConcept C41008148 @default.
- W3122458082 hasConcept C45347329 @default.
- W3122458082 hasConcept C50644808 @default.
- W3122458082 hasConcept C62649853 @default.
- W3122458082 hasConcept C69744172 @default.
- W3122458082 hasConcept C75294576 @default.
- W3122458082 hasConceptScore W3122458082C115961682 @default.
- W3122458082 hasConceptScore W3122458082C127313418 @default.
- W3122458082 hasConceptScore W3122458082C138268822 @default.
- W3122458082 hasConceptScore W3122458082C142575187 @default.
- W3122458082 hasConceptScore W3122458082C153180895 @default.
- W3122458082 hasConceptScore W3122458082C154945302 @default.
- W3122458082 hasConceptScore W3122458082C205372480 @default.
- W3122458082 hasConceptScore W3122458082C2524010 @default.
- W3122458082 hasConceptScore W3122458082C2776321320 @default.
- W3122458082 hasConceptScore W3122458082C31972630 @default.
- W3122458082 hasConceptScore W3122458082C33923547 @default.
- W3122458082 hasConceptScore W3122458082C41008148 @default.
- W3122458082 hasConceptScore W3122458082C45347329 @default.
- W3122458082 hasConceptScore W3122458082C50644808 @default.
- W3122458082 hasConceptScore W3122458082C62649853 @default.
- W3122458082 hasConceptScore W3122458082C69744172 @default.
- W3122458082 hasConceptScore W3122458082C75294576 @default.
- W3122458082 hasFunder F4320326832 @default.