Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122632967> ?p ?o ?g. }
- W3122632967 endingPage "106763" @default.
- W3122632967 startingPage "106763" @default.
- W3122632967 abstract "The persistent monitoring of evapotranspiration (ET) over the regions suffering from water scarcity is critical for sustainable agricultural water management. Remote sensing provides time- and cost-effective capability to investigate daily ET rates at large scales. Satellite-based actual evapotranspiration (ETa) algorithms typically rely on specifying the upper and lower boundaries of ETa rate over agricultural and pasture fields, commonly known as hot (dry) and cold (wet) pixels selection. These boundaries are to be recognized by an expert through a subjective and labor-intensive task. In this study, a method has been introduced to automatically select appropriate anchor pixels (i.e., hot and cold pixels) independent from land use/cover maps with the simplest possible way, quickly applied even by an inexperienced operator. Subsequently, ETa was calculated using Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), Surface Energy Balance Algorithm for Land (SEBAL), and Surface Energy Balance System (SEBS) algorithms and evaluated against measured data. In this method, the mountains and foothills were removed using the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) and the subsequent product was a slope mask. Then, filters were applied based on the Normalized Difference Vegetation Index (NDVI), Albedo, and Land Surface Temperature (LST) images to identify potential candidate pixels for hot and cold pixels. In the end, the best-conditioned pixel being closest to the meteorological station was selected. The method was assessed in five different regions with different topographic and climatic conditions. The selected pixels were first visually validated in Landsat images, and then the fluctuations and values were discussed in time series of anchor pixels and LST histograms. The visual interpretation was indicative of selecting the anchor pixels in fallow (hot pixel) and densely vegetated (cold pixel) surfaces. Also, the hot and cold pixels were suitably situated in the upper and lower quartiles of the LST histogram, respectively. The range of cold pixels variations throughout the study periods was lower compared with the hot pixels (44.2, 55.3, 35.5, 66.5, and 25.2 K for hot pixels against 34.2, 45.7, 25.6, 52.2, and 17 K for cold pixels) as expected, which emanated from the lower fluctuations of temperature over vegetation against the soil. The results were indicative of the better performance of METRIC compared with SEBAL and SEBS with greater values of R2 in all the regions. Therefore, using the introduced method, the expert subjective interference was eliminated and processing time reduced significantly from about 1 h per image to a few minutes." @default.
- W3122632967 created "2021-02-01" @default.
- W3122632967 creator A5015500542 @default.
- W3122632967 creator A5023340070 @default.
- W3122632967 creator A5033429910 @default.
- W3122632967 creator A5052039354 @default.
- W3122632967 creator A5064787093 @default.
- W3122632967 creator A5077900029 @default.
- W3122632967 date "2021-04-01" @default.
- W3122632967 modified "2023-10-16" @default.
- W3122632967 title "Automatically selecting hot and cold pixels for satellite actual evapotranspiration estimation under different topographic and climatic conditions" @default.
- W3122632967 cites W1480975298 @default.
- W3122632967 cites W1967395374 @default.
- W3122632967 cites W1980320347 @default.
- W3122632967 cites W1999714000 @default.
- W3122632967 cites W2000363461 @default.
- W3122632967 cites W2001564322 @default.
- W3122632967 cites W2018318189 @default.
- W3122632967 cites W2027951349 @default.
- W3122632967 cites W2031850163 @default.
- W3122632967 cites W2035750701 @default.
- W3122632967 cites W2038819298 @default.
- W3122632967 cites W2041570083 @default.
- W3122632967 cites W2056124940 @default.
- W3122632967 cites W2056784617 @default.
- W3122632967 cites W2059205508 @default.
- W3122632967 cites W2061003790 @default.
- W3122632967 cites W2069734853 @default.
- W3122632967 cites W2086532849 @default.
- W3122632967 cites W2086959678 @default.
- W3122632967 cites W2087661722 @default.
- W3122632967 cites W2095029195 @default.
- W3122632967 cites W2110551389 @default.
- W3122632967 cites W2112084935 @default.
- W3122632967 cites W2119132330 @default.
- W3122632967 cites W2135685863 @default.
- W3122632967 cites W2137341626 @default.
- W3122632967 cites W2155499550 @default.
- W3122632967 cites W2171395380 @default.
- W3122632967 cites W2194186503 @default.
- W3122632967 cites W2567655501 @default.
- W3122632967 cites W2604505295 @default.
- W3122632967 cites W2615892279 @default.
- W3122632967 cites W2736435808 @default.
- W3122632967 cites W2762151664 @default.
- W3122632967 cites W2789707096 @default.
- W3122632967 cites W2808122040 @default.
- W3122632967 cites W2907360806 @default.
- W3122632967 cites W2944149677 @default.
- W3122632967 cites W2964778169 @default.
- W3122632967 cites W2995687014 @default.
- W3122632967 cites W2999261269 @default.
- W3122632967 cites W3022643510 @default.
- W3122632967 doi "https://doi.org/10.1016/j.agwat.2021.106763" @default.
- W3122632967 hasPublicationYear "2021" @default.
- W3122632967 type Work @default.
- W3122632967 sameAs 3122632967 @default.
- W3122632967 citedByCount "10" @default.
- W3122632967 countsByYear W31226329672021 @default.
- W3122632967 countsByYear W31226329672022 @default.
- W3122632967 countsByYear W31226329672023 @default.
- W3122632967 crossrefType "journal-article" @default.
- W3122632967 hasAuthorship W3122632967A5015500542 @default.
- W3122632967 hasAuthorship W3122632967A5023340070 @default.
- W3122632967 hasAuthorship W3122632967A5033429910 @default.
- W3122632967 hasAuthorship W3122632967A5052039354 @default.
- W3122632967 hasAuthorship W3122632967A5064787093 @default.
- W3122632967 hasAuthorship W3122632967A5077900029 @default.
- W3122632967 hasConcept C111368507 @default.
- W3122632967 hasConcept C127313418 @default.
- W3122632967 hasConcept C127413603 @default.
- W3122632967 hasConcept C132651083 @default.
- W3122632967 hasConcept C146978453 @default.
- W3122632967 hasConcept C153294291 @default.
- W3122632967 hasConcept C1549246 @default.
- W3122632967 hasConcept C154945302 @default.
- W3122632967 hasConcept C160633673 @default.
- W3122632967 hasConcept C176783924 @default.
- W3122632967 hasConcept C181843262 @default.
- W3122632967 hasConcept C184149073 @default.
- W3122632967 hasConcept C187320778 @default.
- W3122632967 hasConcept C18903297 @default.
- W3122632967 hasConcept C19269812 @default.
- W3122632967 hasConcept C205649164 @default.
- W3122632967 hasConcept C2777423268 @default.
- W3122632967 hasConcept C2778102629 @default.
- W3122632967 hasConcept C39432304 @default.
- W3122632967 hasConcept C41008148 @default.
- W3122632967 hasConcept C62649853 @default.
- W3122632967 hasConcept C66465714 @default.
- W3122632967 hasConcept C86803240 @default.
- W3122632967 hasConceptScore W3122632967C111368507 @default.
- W3122632967 hasConceptScore W3122632967C127313418 @default.
- W3122632967 hasConceptScore W3122632967C127413603 @default.
- W3122632967 hasConceptScore W3122632967C132651083 @default.
- W3122632967 hasConceptScore W3122632967C146978453 @default.
- W3122632967 hasConceptScore W3122632967C153294291 @default.
- W3122632967 hasConceptScore W3122632967C1549246 @default.