Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122641939> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3122641939 startingPage "1" @default.
- W3122641939 abstract "Abnormal pattern prediction has received a great deal of attention from both academia and industry, with applications that range from fraud, terrorism and intrusion detection to sensor events, medical diagnoses, weather patterns, etc. In practice, most abnormal pattern prediction problems are characterized by the presence of a small number of labeled data and a huge number of unlabeled data. While this points most obviously to the adoption of a semi-supervised approach, most empirical studies have opted for a simplification and treated it as a supervised problem, resulting in a severe bias of false negatives. In this paper, we propose an innovative methodology based on semi-supervised techniques and introduce a new metric the Cluster-Score for abnormal homogeneity measurement. Specifically, the methodology involves transmuting unsupervised models to supervised models using the Cluster-Score metric, which defines the objective boundaries between clusters and evaluates the homogeneity of the abnormalities in the cluster construction. We apply this methodology to a problem of fraud detection among property insurance claims. The objectives are to increase the number of fraudulent claims detected and to reduce the proportion of claims investigated that are, in fact, non-fraudulent. The results from applying our methodology considerably improved these objectives." @default.
- W3122641939 created "2021-02-01" @default.
- W3122641939 creator A5006074105 @default.
- W3122641939 date "2018-01-01" @default.
- W3122641939 modified "2023-10-18" @default.
- W3122641939 title "Detecting Outliers with Semi-Supervised Machine Learning: a Fraud Prediction Application" @default.
- W3122641939 hasPublicationYear "2018" @default.
- W3122641939 type Work @default.
- W3122641939 sameAs 3122641939 @default.
- W3122641939 citedByCount "0" @default.
- W3122641939 crossrefType "journal-article" @default.
- W3122641939 hasAuthorship W3122641939A5006074105 @default.
- W3122641939 hasConcept C119857082 @default.
- W3122641939 hasConcept C124101348 @default.
- W3122641939 hasConcept C127413603 @default.
- W3122641939 hasConcept C136389625 @default.
- W3122641939 hasConcept C142259097 @default.
- W3122641939 hasConcept C142724271 @default.
- W3122641939 hasConcept C154945302 @default.
- W3122641939 hasConcept C176217482 @default.
- W3122641939 hasConcept C21547014 @default.
- W3122641939 hasConcept C41008148 @default.
- W3122641939 hasConcept C50644808 @default.
- W3122641939 hasConcept C534262118 @default.
- W3122641939 hasConcept C71924100 @default.
- W3122641939 hasConcept C73555534 @default.
- W3122641939 hasConcept C739882 @default.
- W3122641939 hasConcept C79337645 @default.
- W3122641939 hasConceptScore W3122641939C119857082 @default.
- W3122641939 hasConceptScore W3122641939C124101348 @default.
- W3122641939 hasConceptScore W3122641939C127413603 @default.
- W3122641939 hasConceptScore W3122641939C136389625 @default.
- W3122641939 hasConceptScore W3122641939C142259097 @default.
- W3122641939 hasConceptScore W3122641939C142724271 @default.
- W3122641939 hasConceptScore W3122641939C154945302 @default.
- W3122641939 hasConceptScore W3122641939C176217482 @default.
- W3122641939 hasConceptScore W3122641939C21547014 @default.
- W3122641939 hasConceptScore W3122641939C41008148 @default.
- W3122641939 hasConceptScore W3122641939C50644808 @default.
- W3122641939 hasConceptScore W3122641939C534262118 @default.
- W3122641939 hasConceptScore W3122641939C71924100 @default.
- W3122641939 hasConceptScore W3122641939C73555534 @default.
- W3122641939 hasConceptScore W3122641939C739882 @default.
- W3122641939 hasConceptScore W3122641939C79337645 @default.
- W3122641939 hasIssue "2" @default.
- W3122641939 hasLocation W31226419391 @default.
- W3122641939 hasOpenAccess W3122641939 @default.
- W3122641939 hasPrimaryLocation W31226419391 @default.
- W3122641939 hasRelatedWork W1251444851 @default.
- W3122641939 hasRelatedWork W148406200 @default.
- W3122641939 hasRelatedWork W1776817391 @default.
- W3122641939 hasRelatedWork W2149206941 @default.
- W3122641939 hasRelatedWork W2153132964 @default.
- W3122641939 hasRelatedWork W2208938455 @default.
- W3122641939 hasRelatedWork W2542410541 @default.
- W3122641939 hasRelatedWork W2909289573 @default.
- W3122641939 hasRelatedWork W2923437336 @default.
- W3122641939 hasRelatedWork W3011997243 @default.
- W3122641939 hasRelatedWork W3032958473 @default.
- W3122641939 hasRelatedWork W3035510612 @default.
- W3122641939 hasRelatedWork W3044412168 @default.
- W3122641939 hasRelatedWork W3138539755 @default.
- W3122641939 hasRelatedWork W3164473209 @default.
- W3122641939 hasRelatedWork W3181806632 @default.
- W3122641939 hasRelatedWork W3202958651 @default.
- W3122641939 hasRelatedWork W3204758638 @default.
- W3122641939 hasRelatedWork W2102585622 @default.
- W3122641939 hasRelatedWork W2164044194 @default.
- W3122641939 isParatext "false" @default.
- W3122641939 isRetracted "false" @default.
- W3122641939 magId "3122641939" @default.
- W3122641939 workType "article" @default.