Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122712005> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3122712005 endingPage "64" @default.
- W3122712005 startingPage "64" @default.
- W3122712005 abstract "COVID-19 has significantly accelerated the adoption of digital technologies across all industries, and the oil and gas industry has been no exception. Consequently, interest in digital data acquisition, the backbone of all digital transformation work flows, also has increased significantly. This can clearly be seen in the multifold increase in the number of SPE papers on this topic since last year. This feature will continue to focus on technologies to improve data accessibility and data acquisition, as well as entirely new data sources and their applications. The papers chosen this year include real-time remote monitoring of steam traps and corrosion using wireless sensors, enabling faster and easier access to relevant subsurface information through deep learning of unstructured documents, and automation of real-time drilling work flows through digital transformation technologies. While not reflected in these papers, a related emerging technology that has the potential to transform the data acquisition paradigm and that is garnering much attention, however, is edge computing. As the saying goes, if you cannot bring the data to the model, take the model to the data. One of the main difficulties in faster adoption of digital transformation in oil and gas has been access to reliable real-time data that can be converted to real-time decisions. This is the case because of the remote and geographically distributed nature of most oil and gas assets and legacy outdated and piecemeal information-technology (IT) infrastructures, making it difficult to provide models with reliable, standardized data in a timely manner. Edge-computing frameworks eliminate scale and capacity constraints and bypass limitations of current IT infrastructures, truly enabling operationalization of models for real-time decision making. Edge computing, together with machine learning and artificial intelligence, will be the real enablers of digital transformation." @default.
- W3122712005 created "2021-02-01" @default.
- W3122712005 creator A5007610482 @default.
- W3122712005 date "2021-01-01" @default.
- W3122712005 modified "2023-09-25" @default.
- W3122712005 title "Technology Focus: Digital Data Acquisition (January 2021)" @default.
- W3122712005 doi "https://doi.org/10.2118/0121-0064-jpt" @default.
- W3122712005 hasPublicationYear "2021" @default.
- W3122712005 type Work @default.
- W3122712005 sameAs 3122712005 @default.
- W3122712005 citedByCount "0" @default.
- W3122712005 crossrefType "journal-article" @default.
- W3122712005 hasAuthorship W3122712005A5007610482 @default.
- W3122712005 hasConcept C111919701 @default.
- W3122712005 hasConcept C115901376 @default.
- W3122712005 hasConcept C120665830 @default.
- W3122712005 hasConcept C121332964 @default.
- W3122712005 hasConcept C124101348 @default.
- W3122712005 hasConcept C126082660 @default.
- W3122712005 hasConcept C127413603 @default.
- W3122712005 hasConcept C136764020 @default.
- W3122712005 hasConcept C163985040 @default.
- W3122712005 hasConcept C192209626 @default.
- W3122712005 hasConcept C2522767166 @default.
- W3122712005 hasConcept C2778864079 @default.
- W3122712005 hasConcept C41008148 @default.
- W3122712005 hasConcept C75684735 @default.
- W3122712005 hasConcept C761482 @default.
- W3122712005 hasConcept C76155785 @default.
- W3122712005 hasConcept C78519656 @default.
- W3122712005 hasConceptScore W3122712005C111919701 @default.
- W3122712005 hasConceptScore W3122712005C115901376 @default.
- W3122712005 hasConceptScore W3122712005C120665830 @default.
- W3122712005 hasConceptScore W3122712005C121332964 @default.
- W3122712005 hasConceptScore W3122712005C124101348 @default.
- W3122712005 hasConceptScore W3122712005C126082660 @default.
- W3122712005 hasConceptScore W3122712005C127413603 @default.
- W3122712005 hasConceptScore W3122712005C136764020 @default.
- W3122712005 hasConceptScore W3122712005C163985040 @default.
- W3122712005 hasConceptScore W3122712005C192209626 @default.
- W3122712005 hasConceptScore W3122712005C2522767166 @default.
- W3122712005 hasConceptScore W3122712005C2778864079 @default.
- W3122712005 hasConceptScore W3122712005C41008148 @default.
- W3122712005 hasConceptScore W3122712005C75684735 @default.
- W3122712005 hasConceptScore W3122712005C761482 @default.
- W3122712005 hasConceptScore W3122712005C76155785 @default.
- W3122712005 hasConceptScore W3122712005C78519656 @default.
- W3122712005 hasIssue "01" @default.
- W3122712005 hasLocation W31227120051 @default.
- W3122712005 hasOpenAccess W3122712005 @default.
- W3122712005 hasPrimaryLocation W31227120051 @default.
- W3122712005 hasRelatedWork W2611113363 @default.
- W3122712005 hasRelatedWork W2885626903 @default.
- W3122712005 hasRelatedWork W2905840432 @default.
- W3122712005 hasRelatedWork W3046436342 @default.
- W3122712005 hasRelatedWork W3093995929 @default.
- W3122712005 hasRelatedWork W3136793133 @default.
- W3122712005 hasRelatedWork W3201821767 @default.
- W3122712005 hasRelatedWork W4205745956 @default.
- W3122712005 hasRelatedWork W4312048601 @default.
- W3122712005 hasRelatedWork W4360867056 @default.
- W3122712005 hasVolume "73" @default.
- W3122712005 isParatext "false" @default.
- W3122712005 isRetracted "false" @default.
- W3122712005 magId "3122712005" @default.
- W3122712005 workType "article" @default.