Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122775581> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3122775581 endingPage "194" @default.
- W3122775581 startingPage "184" @default.
- W3122775581 abstract "Remaining useful life is the estimated continuous normal working time of a component or system from the current moment to the potential failure. The traditional methods have high trial-and-error costs and poor migration capabilities. Fortunately, the neural architecture search (NAS) that has emerged partially solves the problem of automatic construction of network models. However, the search strategy for NAS is reinforcement learning or evolutionary algorithms, which essentially search in discrete space and treating the objective function as a black box, which is very time-consuming. To solve this problem, we proposed a gradient-based neural architecture search method. This method regards a cell in the search space as a directed acyclic graph (DAG) containing N ordered nodes. Each node is a latent representation, and the directed edges represent the conversion operation of two nodes. By mixing the candidate operations (ReLU, tanh) with the softmax function, the search space becomes a continuous space and the objective function becomes a differentiable function, so gradient-based optimization methods can be used to find the optimal structure. A neural architecture search method based on gradient descent for RUL estimation, with extensive experiments showing apparently, outperforms traditional approaches as well as Long Short-Term Memory (LSTM), and it takes much less computing resources than the reinforcement neural architecture search method." @default.
- W3122775581 created "2021-02-01" @default.
- W3122775581 creator A5006204283 @default.
- W3122775581 creator A5013920050 @default.
- W3122775581 creator A5022465649 @default.
- W3122775581 creator A5030458072 @default.
- W3122775581 creator A5057902114 @default.
- W3122775581 creator A5075363417 @default.
- W3122775581 date "2021-05-01" @default.
- W3122775581 modified "2023-10-13" @default.
- W3122775581 title "A neural architecture search method based on gradient descent for remaining useful life estimation" @default.
- W3122775581 cites W2020009149 @default.
- W3122775581 cites W2048868027 @default.
- W3122775581 cites W2055873761 @default.
- W3122775581 cites W2090411045 @default.
- W3122775581 cites W2110787940 @default.
- W3122775581 cites W2124659975 @default.
- W3122775581 cites W2415594836 @default.
- W3122775581 cites W2555297092 @default.
- W3122775581 cites W2591055632 @default.
- W3122775581 cites W2744067593 @default.
- W3122775581 cites W2897557170 @default.
- W3122775581 cites W2898641576 @default.
- W3122775581 cites W2900438754 @default.
- W3122775581 cites W2930439125 @default.
- W3122775581 cites W2932010661 @default.
- W3122775581 cites W2964081807 @default.
- W3122775581 cites W2996752719 @default.
- W3122775581 doi "https://doi.org/10.1016/j.neucom.2021.01.072" @default.
- W3122775581 hasPublicationYear "2021" @default.
- W3122775581 type Work @default.
- W3122775581 sameAs 3122775581 @default.
- W3122775581 citedByCount "11" @default.
- W3122775581 countsByYear W31227755812021 @default.
- W3122775581 countsByYear W31227755812022 @default.
- W3122775581 crossrefType "journal-article" @default.
- W3122775581 hasAuthorship W3122775581A5006204283 @default.
- W3122775581 hasAuthorship W3122775581A5013920050 @default.
- W3122775581 hasAuthorship W3122775581A5022465649 @default.
- W3122775581 hasAuthorship W3122775581A5030458072 @default.
- W3122775581 hasAuthorship W3122775581A5057902114 @default.
- W3122775581 hasAuthorship W3122775581A5075363417 @default.
- W3122775581 hasConcept C11413529 @default.
- W3122775581 hasConcept C126255220 @default.
- W3122775581 hasConcept C134306372 @default.
- W3122775581 hasConcept C153258448 @default.
- W3122775581 hasConcept C154945302 @default.
- W3122775581 hasConcept C188441871 @default.
- W3122775581 hasConcept C202615002 @default.
- W3122775581 hasConcept C33923547 @default.
- W3122775581 hasConcept C41008148 @default.
- W3122775581 hasConcept C50644808 @default.
- W3122775581 hasConcept C74197172 @default.
- W3122775581 hasConcept C97541855 @default.
- W3122775581 hasConceptScore W3122775581C11413529 @default.
- W3122775581 hasConceptScore W3122775581C126255220 @default.
- W3122775581 hasConceptScore W3122775581C134306372 @default.
- W3122775581 hasConceptScore W3122775581C153258448 @default.
- W3122775581 hasConceptScore W3122775581C154945302 @default.
- W3122775581 hasConceptScore W3122775581C188441871 @default.
- W3122775581 hasConceptScore W3122775581C202615002 @default.
- W3122775581 hasConceptScore W3122775581C33923547 @default.
- W3122775581 hasConceptScore W3122775581C41008148 @default.
- W3122775581 hasConceptScore W3122775581C50644808 @default.
- W3122775581 hasConceptScore W3122775581C74197172 @default.
- W3122775581 hasConceptScore W3122775581C97541855 @default.
- W3122775581 hasFunder F4320335787 @default.
- W3122775581 hasLocation W31227755811 @default.
- W3122775581 hasOpenAccess W3122775581 @default.
- W3122775581 hasPrimaryLocation W31227755811 @default.
- W3122775581 hasRelatedWork W2249953602 @default.
- W3122775581 hasRelatedWork W2801655600 @default.
- W3122775581 hasRelatedWork W2912971006 @default.
- W3122775581 hasRelatedWork W2962876041 @default.
- W3122775581 hasRelatedWork W2980176872 @default.
- W3122775581 hasRelatedWork W3090555870 @default.
- W3122775581 hasRelatedWork W3107204728 @default.
- W3122775581 hasRelatedWork W3108503355 @default.
- W3122775581 hasRelatedWork W4226420367 @default.
- W3122775581 hasRelatedWork W4287591324 @default.
- W3122775581 hasVolume "438" @default.
- W3122775581 isParatext "false" @default.
- W3122775581 isRetracted "false" @default.
- W3122775581 magId "3122775581" @default.
- W3122775581 workType "article" @default.