Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122830743> ?p ?o ?g. }
- W3122830743 endingPage "112307" @default.
- W3122830743 startingPage "112307" @default.
- W3122830743 abstract "Accurate segmentation of individual tree crowns (ITCs) from airborne light detection and ranging (LiDAR) data remains a challenge for forest inventories. Although many ITC segmentation methods have been developed to derive tree crown information from airborne LiDAR data, these algorithms contain uncertainty in processing false treetops because of foliage clumps and lateral branches, overlapping canopies without clear valley-shape areas, and sub-canopy crowns with neighbouring trees that obscure their shapes from an aerial perspective. Here, we propose an approach to crown segmentation using computer vision theories applied in different forest types. First, a dual Gaussian filter was designed with automated adaptive parameter assignment and a screening strategy for false treetops. This preserved the geometric characteristics of sub-canopy trees while eliminating false treetops. Second, anisotropic water expansion controlled by the energy function was applied for accurate crown segmentation. This utilized gradient information from the digital surface model and explored the morphological structures of tree crown boundaries as analogous to the maximal valley height difference from surrounding treetops. We demonstrate the generality of our approach in the subtropical forests within China. Our approach enhanced the detection rate of treetops and ITC segmentation relative to the marker-controlled watershed method, especially in complicated intersections of multiple crowns. A high performance was demonstrated for three pure Eucalyptus plots (a treetop detection rate r ≥ 0.95 and crown width estimation R 2 ≥ 0.90 for canopy trees; r ≥ 0.85 and R 2 ≥ 0.88 for sub-canopy trees) and three plots dominated by Chinese fir ( r ≥ 0.95 and R 2 ≥ 0.87 for canopy trees; r ≥ 0.79 and R 2 ≥ 0.83 for sub-canopy trees). Finally, in a relatively complex forest park containing a wide range of tree species and sizes, a high performance was also achieved ( r = 0.93 and R 2 ≥ 0.85 for canopy trees; r = 0.70 and R 2 ≥ 0.80 for sub-canopy trees). Our method demonstrates that methods inspired by the computer vision theory can improve on existing approaches, providing the potential for accurate crown segmentation even in mixed forests with complex structures • Computer vision theory was applied to individual tree crown segmentation. • Dual Gaussian filters yielded a better performance in treetop detection with a DSM. • The energy function controlled the water expansion in error-prone regions. • The reliability of our method was verified with field data of various forest plots." @default.
- W3122830743 created "2021-02-01" @default.
- W3122830743 creator A5004000901 @default.
- W3122830743 creator A5004431666 @default.
- W3122830743 creator A5010330473 @default.
- W3122830743 creator A5021963452 @default.
- W3122830743 creator A5035896709 @default.
- W3122830743 creator A5041001060 @default.
- W3122830743 creator A5047254538 @default.
- W3122830743 creator A5050522685 @default.
- W3122830743 creator A5052257313 @default.
- W3122830743 date "2021-04-01" @default.
- W3122830743 modified "2023-10-03" @default.
- W3122830743 title "Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach" @default.
- W3122830743 cites W1436861582 @default.
- W3122830743 cites W1491630371 @default.
- W3122830743 cites W1850186504 @default.
- W3122830743 cites W1942861091 @default.
- W3122830743 cites W1982788959 @default.
- W3122830743 cites W1995030392 @default.
- W3122830743 cites W1995602130 @default.
- W3122830743 cites W1998419211 @default.
- W3122830743 cites W2005603973 @default.
- W3122830743 cites W2033827163 @default.
- W3122830743 cites W2043047386 @default.
- W3122830743 cites W2065030504 @default.
- W3122830743 cites W2069607360 @default.
- W3122830743 cites W2082865662 @default.
- W3122830743 cites W2086118991 @default.
- W3122830743 cites W2095939378 @default.
- W3122830743 cites W2144313462 @default.
- W3122830743 cites W2149763473 @default.
- W3122830743 cites W2151538727 @default.
- W3122830743 cites W2165661463 @default.
- W3122830743 cites W2174505781 @default.
- W3122830743 cites W2313448762 @default.
- W3122830743 cites W2329027118 @default.
- W3122830743 cites W2425812835 @default.
- W3122830743 cites W2555132450 @default.
- W3122830743 cites W2767894093 @default.
- W3122830743 cites W2801833195 @default.
- W3122830743 cites W2805687669 @default.
- W3122830743 cites W2806709398 @default.
- W3122830743 cites W2885035168 @default.
- W3122830743 cites W2891313231 @default.
- W3122830743 cites W2903224593 @default.
- W3122830743 cites W2920998379 @default.
- W3122830743 cites W2928782015 @default.
- W3122830743 cites W2936864403 @default.
- W3122830743 cites W2941542684 @default.
- W3122830743 cites W2944108734 @default.
- W3122830743 cites W2953421574 @default.
- W3122830743 cites W2955280575 @default.
- W3122830743 cites W2969753545 @default.
- W3122830743 cites W2970161704 @default.
- W3122830743 cites W3008870755 @default.
- W3122830743 cites W3023775819 @default.
- W3122830743 cites W3035122126 @default.
- W3122830743 cites W3059456920 @default.
- W3122830743 cites W3086576754 @default.
- W3122830743 doi "https://doi.org/10.1016/j.rse.2021.112307" @default.
- W3122830743 hasPublicationYear "2021" @default.
- W3122830743 type Work @default.
- W3122830743 sameAs 3122830743 @default.
- W3122830743 citedByCount "61" @default.
- W3122830743 countsByYear W31228307432021 @default.
- W3122830743 countsByYear W31228307432022 @default.
- W3122830743 countsByYear W31228307432023 @default.
- W3122830743 crossrefType "journal-article" @default.
- W3122830743 hasAuthorship W3122830743A5004000901 @default.
- W3122830743 hasAuthorship W3122830743A5004431666 @default.
- W3122830743 hasAuthorship W3122830743A5010330473 @default.
- W3122830743 hasAuthorship W3122830743A5021963452 @default.
- W3122830743 hasAuthorship W3122830743A5035896709 @default.
- W3122830743 hasAuthorship W3122830743A5041001060 @default.
- W3122830743 hasAuthorship W3122830743A5047254538 @default.
- W3122830743 hasAuthorship W3122830743A5050522685 @default.
- W3122830743 hasAuthorship W3122830743A5052257313 @default.
- W3122830743 hasConcept C101000010 @default.
- W3122830743 hasConcept C113174947 @default.
- W3122830743 hasConcept C127313418 @default.
- W3122830743 hasConcept C134306372 @default.
- W3122830743 hasConcept C154945302 @default.
- W3122830743 hasConcept C166957645 @default.
- W3122830743 hasConcept C199343813 @default.
- W3122830743 hasConcept C205649164 @default.
- W3122830743 hasConcept C2778400979 @default.
- W3122830743 hasConcept C33923547 @default.
- W3122830743 hasConcept C39432304 @default.
- W3122830743 hasConcept C41008148 @default.
- W3122830743 hasConcept C51399673 @default.
- W3122830743 hasConcept C62649853 @default.
- W3122830743 hasConcept C71924100 @default.
- W3122830743 hasConcept C89600930 @default.
- W3122830743 hasConceptScore W3122830743C101000010 @default.
- W3122830743 hasConceptScore W3122830743C113174947 @default.
- W3122830743 hasConceptScore W3122830743C127313418 @default.
- W3122830743 hasConceptScore W3122830743C134306372 @default.