Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122923048> ?p ?o ?g. }
- W3122923048 abstract "As demand for intelligent manufacturing continues to grow, tiny object quality assessment (TOQA) is becoming increasingly importance in industrial automation. Recently, visual-based TOQA has attracted an increasing attention, since the physical appearance is the foremost assessment index for evaluating the tiny object quality. It is exhausted and challenging to determine the quality of tiny object by manual visual inspection, and thus some machine vision systems are developed for automatic TOQA. Existing systems often use a limited number of cameras to capture the image of fallen tiny object, and thus may be not reliable since the tiny object may be unsound (such as cracked or damaged) in an invisible side. In this article, we develop a novel system for automatic TOQA that captures images of tiny object from multiple (more than two) view points, and propose a novel method termed weighted ensemble network (WENet) to effectively integrate the information of different views. In particular, convolutional neural networks (CNNs) are adopted to extract features from the images of different views. Then the multiview features are weighted combined for tiny object quality prediction. Traditional ensemble approaches usually directly applying average or voting to the prediction results of different views, or learn fixed weights to combine the results. Different from these approaches, the weights are adaptively determined in our method according to the quality of the captured image, since the features extracted from a low-quality (e.g., blurred) image should contribute less to the final prediction. Handcrafted features and deep features are integrated in a sophisticated way in our method, and we empirically demonstrate the effectiveness of our method on grain quality assessment by investigating different CNN architectures for feature extraction and comparing with the conventional ensemble approaches." @default.
- W3122923048 created "2021-02-01" @default.
- W3122923048 creator A5019331459 @default.
- W3122923048 creator A5027451971 @default.
- W3122923048 creator A5044959745 @default.
- W3122923048 creator A5055909006 @default.
- W3122923048 creator A5071893227 @default.
- W3122923048 date "2021-01-23" @default.
- W3122923048 modified "2023-09-27" @default.
- W3122923048 title "Weighted ensemble networks for <scp>multiview</scp> based tiny object quality assessment" @default.
- W3122923048 cites W115317182 @default.
- W3122923048 cites W1510688672 @default.
- W3122923048 cites W1875061881 @default.
- W3122923048 cites W1911842519 @default.
- W3122923048 cites W1990084856 @default.
- W3122923048 cites W2021240018 @default.
- W3122923048 cites W2033284816 @default.
- W3122923048 cites W2080130515 @default.
- W3122923048 cites W2082448888 @default.
- W3122923048 cites W2093045504 @default.
- W3122923048 cites W2097117768 @default.
- W3122923048 cites W2106390255 @default.
- W3122923048 cites W2194775991 @default.
- W3122923048 cites W2303076655 @default.
- W3122923048 cites W2473697052 @default.
- W3122923048 cites W2480913096 @default.
- W3122923048 cites W2492133633 @default.
- W3122923048 cites W2519140045 @default.
- W3122923048 cites W2520707959 @default.
- W3122923048 cites W2577148968 @default.
- W3122923048 cites W2605809234 @default.
- W3122923048 cites W2726355056 @default.
- W3122923048 cites W2735680049 @default.
- W3122923048 cites W2743390484 @default.
- W3122923048 cites W2753554633 @default.
- W3122923048 cites W2765934933 @default.
- W3122923048 cites W2780669455 @default.
- W3122923048 cites W2792925474 @default.
- W3122923048 cites W2807634467 @default.
- W3122923048 cites W2810236372 @default.
- W3122923048 cites W2835045226 @default.
- W3122923048 cites W2894558768 @default.
- W3122923048 cites W2896613673 @default.
- W3122923048 cites W2902216465 @default.
- W3122923048 cites W2930700974 @default.
- W3122923048 cites W2946232786 @default.
- W3122923048 cites W2969854835 @default.
- W3122923048 cites W2972536205 @default.
- W3122923048 cites W3006834685 @default.
- W3122923048 cites W3102476541 @default.
- W3122923048 cites W4244313837 @default.
- W3122923048 doi "https://doi.org/10.1002/cpe.5995" @default.
- W3122923048 hasPublicationYear "2021" @default.
- W3122923048 type Work @default.
- W3122923048 sameAs 3122923048 @default.
- W3122923048 citedByCount "2" @default.
- W3122923048 countsByYear W31229230482022 @default.
- W3122923048 crossrefType "journal-article" @default.
- W3122923048 hasAuthorship W3122923048A5019331459 @default.
- W3122923048 hasAuthorship W3122923048A5027451971 @default.
- W3122923048 hasAuthorship W3122923048A5044959745 @default.
- W3122923048 hasAuthorship W3122923048A5055909006 @default.
- W3122923048 hasAuthorship W3122923048A5071893227 @default.
- W3122923048 hasConcept C111472728 @default.
- W3122923048 hasConcept C115901376 @default.
- W3122923048 hasConcept C127413603 @default.
- W3122923048 hasConcept C138885662 @default.
- W3122923048 hasConcept C153180895 @default.
- W3122923048 hasConcept C154945302 @default.
- W3122923048 hasConcept C2779530757 @default.
- W3122923048 hasConcept C2781238097 @default.
- W3122923048 hasConcept C2984842247 @default.
- W3122923048 hasConcept C31972630 @default.
- W3122923048 hasConcept C41008148 @default.
- W3122923048 hasConcept C50644808 @default.
- W3122923048 hasConcept C5339829 @default.
- W3122923048 hasConcept C78519656 @default.
- W3122923048 hasConcept C81363708 @default.
- W3122923048 hasConceptScore W3122923048C111472728 @default.
- W3122923048 hasConceptScore W3122923048C115901376 @default.
- W3122923048 hasConceptScore W3122923048C127413603 @default.
- W3122923048 hasConceptScore W3122923048C138885662 @default.
- W3122923048 hasConceptScore W3122923048C153180895 @default.
- W3122923048 hasConceptScore W3122923048C154945302 @default.
- W3122923048 hasConceptScore W3122923048C2779530757 @default.
- W3122923048 hasConceptScore W3122923048C2781238097 @default.
- W3122923048 hasConceptScore W3122923048C2984842247 @default.
- W3122923048 hasConceptScore W3122923048C31972630 @default.
- W3122923048 hasConceptScore W3122923048C41008148 @default.
- W3122923048 hasConceptScore W3122923048C50644808 @default.
- W3122923048 hasConceptScore W3122923048C5339829 @default.
- W3122923048 hasConceptScore W3122923048C78519656 @default.
- W3122923048 hasConceptScore W3122923048C81363708 @default.
- W3122923048 hasFunder F4320321001 @default.
- W3122923048 hasIssue "6" @default.
- W3122923048 hasLocation W31229230481 @default.
- W3122923048 hasOpenAccess W3122923048 @default.
- W3122923048 hasPrimaryLocation W31229230481 @default.
- W3122923048 hasRelatedWork W1528044252 @default.
- W3122923048 hasRelatedWork W1837097281 @default.