Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122961957> ?p ?o ?g. }
- W3122961957 endingPage "104701" @default.
- W3122961957 startingPage "104701" @default.
- W3122961957 abstract "Using geophysical inversion for three-dimensional (3D) geological modeling is an effective way to model underground geological structures. In this study, we propose and investigate a 3D geological structure inversion method using convolutional neural networks (CNNs). This method can quickly predict the parameters of a geological structure for constructing a 3D model. First, we sample the geological model space by generating millions of 3D geological models and their corresponding magnetic images. The dataset we use to train CNN classification and regression models includes faults, folds, tilts, tilt-faults and fold-faults. The classification model is used to judge the classification of geological structures. The regression model is used to predict the attitudes of geological structures. The method is applied to synthetic data and real survey data, and the results show that geological structures can be recovered effectively. The classification accuracy is approximately 100%, and the regression accuracy of different structures is mostly between 80% and 97%." @default.
- W3122961957 created "2021-02-01" @default.
- W3122961957 creator A5011774573 @default.
- W3122961957 creator A5016652643 @default.
- W3122961957 creator A5022842388 @default.
- W3122961957 creator A5031500726 @default.
- W3122961957 creator A5048025879 @default.
- W3122961957 creator A5063044952 @default.
- W3122961957 creator A5064528532 @default.
- W3122961957 creator A5068564418 @default.
- W3122961957 date "2021-04-01" @default.
- W3122961957 modified "2023-10-14" @default.
- W3122961957 title "3D geological structure inversion from Noddy-generated magnetic data using deep learning methods" @default.
- W3122961957 cites W1969123802 @default.
- W3122961957 cites W1978053173 @default.
- W3122961957 cites W1983695428 @default.
- W3122961957 cites W1988045831 @default.
- W3122961957 cites W1996344134 @default.
- W3122961957 cites W2013190964 @default.
- W3122961957 cites W2039226002 @default.
- W3122961957 cites W2045952723 @default.
- W3122961957 cites W2053376610 @default.
- W3122961957 cites W2057551549 @default.
- W3122961957 cites W2074009903 @default.
- W3122961957 cites W2084324925 @default.
- W3122961957 cites W2101611497 @default.
- W3122961957 cites W2111238034 @default.
- W3122961957 cites W2113143455 @default.
- W3122961957 cites W2116102128 @default.
- W3122961957 cites W2133389771 @default.
- W3122961957 cites W2138638442 @default.
- W3122961957 cites W2144118383 @default.
- W3122961957 cites W2169167685 @default.
- W3122961957 cites W2180200885 @default.
- W3122961957 cites W2417557894 @default.
- W3122961957 cites W2550564567 @default.
- W3122961957 cites W2559488099 @default.
- W3122961957 cites W2574059746 @default.
- W3122961957 cites W2586516515 @default.
- W3122961957 cites W2592421213 @default.
- W3122961957 cites W2599603244 @default.
- W3122961957 cites W2740415769 @default.
- W3122961957 cites W2760908924 @default.
- W3122961957 cites W2760922823 @default.
- W3122961957 cites W2762902720 @default.
- W3122961957 cites W2794436210 @default.
- W3122961957 cites W2795398442 @default.
- W3122961957 cites W2887470299 @default.
- W3122961957 cites W2905919278 @default.
- W3122961957 cites W2906141267 @default.
- W3122961957 cites W2906386705 @default.
- W3122961957 cites W2906486181 @default.
- W3122961957 cites W2924230311 @default.
- W3122961957 cites W2985480130 @default.
- W3122961957 cites W3012833929 @default.
- W3122961957 cites W3018127835 @default.
- W3122961957 cites W3018977483 @default.
- W3122961957 cites W3032098059 @default.
- W3122961957 cites W3087374394 @default.
- W3122961957 cites W3104223502 @default.
- W3122961957 cites W3107569396 @default.
- W3122961957 cites W3129381195 @default.
- W3122961957 doi "https://doi.org/10.1016/j.cageo.2021.104701" @default.
- W3122961957 hasPublicationYear "2021" @default.
- W3122961957 type Work @default.
- W3122961957 sameAs 3122961957 @default.
- W3122961957 citedByCount "28" @default.
- W3122961957 countsByYear W31229619572021 @default.
- W3122961957 countsByYear W31229619572022 @default.
- W3122961957 countsByYear W31229619572023 @default.
- W3122961957 crossrefType "journal-article" @default.
- W3122961957 hasAuthorship W3122961957A5011774573 @default.
- W3122961957 hasAuthorship W3122961957A5016652643 @default.
- W3122961957 hasAuthorship W3122961957A5022842388 @default.
- W3122961957 hasAuthorship W3122961957A5031500726 @default.
- W3122961957 hasAuthorship W3122961957A5048025879 @default.
- W3122961957 hasAuthorship W3122961957A5063044952 @default.
- W3122961957 hasAuthorship W3122961957A5064528532 @default.
- W3122961957 hasAuthorship W3122961957A5068564418 @default.
- W3122961957 hasConcept C114793014 @default.
- W3122961957 hasConcept C124101348 @default.
- W3122961957 hasConcept C127313418 @default.
- W3122961957 hasConcept C153180895 @default.
- W3122961957 hasConcept C154945302 @default.
- W3122961957 hasConcept C165205528 @default.
- W3122961957 hasConcept C1893757 @default.
- W3122961957 hasConcept C2781113848 @default.
- W3122961957 hasConcept C41008148 @default.
- W3122961957 hasConcept C50644808 @default.
- W3122961957 hasConcept C77928131 @default.
- W3122961957 hasConcept C8058405 @default.
- W3122961957 hasConcept C81363708 @default.
- W3122961957 hasConcept C82586738 @default.
- W3122961957 hasConceptScore W3122961957C114793014 @default.
- W3122961957 hasConceptScore W3122961957C124101348 @default.
- W3122961957 hasConceptScore W3122961957C127313418 @default.
- W3122961957 hasConceptScore W3122961957C153180895 @default.
- W3122961957 hasConceptScore W3122961957C154945302 @default.