Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122963563> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3122963563 endingPage "27" @default.
- W3122963563 startingPage "13" @default.
- W3122963563 abstract "Realistically modelling behaviour and interaction of heterogeneous road users (pedestrians and vehicles) in mixed-traffic zones (a.k.a. shared spaces) is challenging. The dynamic nature of the environment, heterogeneity of transport modes, and the absence of classical traffic rules make realistic microscopic traffic simulation hard problems. Existing multi-agent-based simulations of shared spaces largely use an expert-based approach, combining a symbolic (e.g. rule-based) modelling and reasoning paradigm (e.g. using BDI representations of beliefs and plans) with the hand-crafted encoding of the actual decision logic. More recently, deep learning (DL) models are largely used to derive and predict trajectories based on e.g. video data. In-depth studies comparing these two kinds of approaches are missing. In this work, we propose an expert-based model called GSFM that combines Social Force Model and Game theory and a DL model called LSTM-DBSCAN that manipulates Long Short-Term Memories and density-based clustering for multi-agent trajectory prediction. We create a common framework to run these two models in parallel to guarantee a fair comparison. Real-world mixed traffic data from shared spaces of different layout are used to calibrate/train and evaluate the models. The empirical results imply that both models can generate realistic predictions, but they differ in the way of handling collisions and mimicking heterogeneous behaviour. Via a thorough study, we draw the conclusion of their respective strengths and weaknesses." @default.
- W3122963563 created "2021-02-01" @default.
- W3122963563 creator A5005203044 @default.
- W3122963563 creator A5020817045 @default.
- W3122963563 creator A5037500658 @default.
- W3122963563 creator A5043083126 @default.
- W3122963563 date "2021-01-01" @default.
- W3122963563 modified "2023-09-29" @default.
- W3122963563 title "Trajectory Modelling in Shared Spaces: Expert-Based vs. Deep Learning Approach?" @default.
- W3122963563 cites W2019311180 @default.
- W3122963563 cites W2040013490 @default.
- W3122963563 cites W2076063813 @default.
- W3122963563 cites W2146183743 @default.
- W3122963563 cites W2167052694 @default.
- W3122963563 cites W2191327247 @default.
- W3122963563 cites W2262488289 @default.
- W3122963563 cites W2424778531 @default.
- W3122963563 cites W2607296803 @default.
- W3122963563 cites W2623223561 @default.
- W3122963563 cites W2792764194 @default.
- W3122963563 cites W2895957966 @default.
- W3122963563 cites W2903992640 @default.
- W3122963563 cites W2904712544 @default.
- W3122963563 cites W2919115771 @default.
- W3122963563 cites W2962687116 @default.
- W3122963563 cites W2962715980 @default.
- W3122963563 cites W2963001155 @default.
- W3122963563 cites W2963687836 @default.
- W3122963563 cites W2965970765 @default.
- W3122963563 cites W2970140906 @default.
- W3122963563 cites W2971001378 @default.
- W3122963563 cites W3020517605 @default.
- W3122963563 cites W4252971224 @default.
- W3122963563 doi "https://doi.org/10.1007/978-3-030-66888-4_2" @default.
- W3122963563 hasPublicationYear "2021" @default.
- W3122963563 type Work @default.
- W3122963563 sameAs 3122963563 @default.
- W3122963563 citedByCount "7" @default.
- W3122963563 countsByYear W31229635632020 @default.
- W3122963563 countsByYear W31229635632021 @default.
- W3122963563 countsByYear W31229635632022 @default.
- W3122963563 countsByYear W31229635632023 @default.
- W3122963563 crossrefType "book-chapter" @default.
- W3122963563 hasAuthorship W3122963563A5005203044 @default.
- W3122963563 hasAuthorship W3122963563A5020817045 @default.
- W3122963563 hasAuthorship W3122963563A5037500658 @default.
- W3122963563 hasAuthorship W3122963563A5043083126 @default.
- W3122963563 hasConcept C108583219 @default.
- W3122963563 hasConcept C119857082 @default.
- W3122963563 hasConcept C121332964 @default.
- W3122963563 hasConcept C124101348 @default.
- W3122963563 hasConcept C1276947 @default.
- W3122963563 hasConcept C13662910 @default.
- W3122963563 hasConcept C154945302 @default.
- W3122963563 hasConcept C41008148 @default.
- W3122963563 hasConcept C73555534 @default.
- W3122963563 hasConcept C80444323 @default.
- W3122963563 hasConceptScore W3122963563C108583219 @default.
- W3122963563 hasConceptScore W3122963563C119857082 @default.
- W3122963563 hasConceptScore W3122963563C121332964 @default.
- W3122963563 hasConceptScore W3122963563C124101348 @default.
- W3122963563 hasConceptScore W3122963563C1276947 @default.
- W3122963563 hasConceptScore W3122963563C13662910 @default.
- W3122963563 hasConceptScore W3122963563C154945302 @default.
- W3122963563 hasConceptScore W3122963563C41008148 @default.
- W3122963563 hasConceptScore W3122963563C73555534 @default.
- W3122963563 hasConceptScore W3122963563C80444323 @default.
- W3122963563 hasLocation W31229635631 @default.
- W3122963563 hasOpenAccess W3122963563 @default.
- W3122963563 hasPrimaryLocation W31229635631 @default.
- W3122963563 hasRelatedWork W2625601144 @default.
- W3122963563 hasRelatedWork W3014300295 @default.
- W3122963563 hasRelatedWork W3164822677 @default.
- W3122963563 hasRelatedWork W4223943233 @default.
- W3122963563 hasRelatedWork W4225161397 @default.
- W3122963563 hasRelatedWork W4312200629 @default.
- W3122963563 hasRelatedWork W4360585206 @default.
- W3122963563 hasRelatedWork W4364306694 @default.
- W3122963563 hasRelatedWork W4380075502 @default.
- W3122963563 hasRelatedWork W4380086463 @default.
- W3122963563 isParatext "false" @default.
- W3122963563 isRetracted "false" @default.
- W3122963563 magId "3122963563" @default.
- W3122963563 workType "book-chapter" @default.