Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122968430> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3122968430 abstract "Interactive Educational Systems (IES) enabled researchers to trace student knowledge in different skills and provide recommendations for a better learning path. To estimate the student knowledge and further predict their future performance, the interest in utilizing the student interaction data captured by IES to develop learner performance models is increasing rapidly. Moreover, with the advances in computing systems, the amount of data captured by these IES systems is also increasing that enables deep learning models to compete with traditional logistic models and Markov processes. However, it is still not empirically evident if these deep models outperform traditional models on the current scale of datasets with millions of student interactions. In this work, we adopt EdNet, the largest student interaction dataset publicly available in the education domain, to understand how accurately both deep and traditional models predict future student performances. Our work observes that logistic regression models with carefully engineered features outperformed deep models from extensive experimentation. We follow this analysis with interpretation studies based on Locally Interpretable Model-agnostic Explanation (LIME) to understand the impact of various features on best performing model pre-dictions." @default.
- W3122968430 created "2021-02-01" @default.
- W3122968430 creator A5032219874 @default.
- W3122968430 creator A5053727798 @default.
- W3122968430 creator A5083588795 @default.
- W3122968430 date "2021-01-20" @default.
- W3122968430 modified "2023-10-17" @default.
- W3122968430 title "Do we need to go Deep? Knowledge Tracing with Big Data" @default.
- W3122968430 cites W1518613644 @default.
- W3122968430 cites W1596401170 @default.
- W3122968430 cites W1981119341 @default.
- W3122968430 cites W2015040676 @default.
- W3122968430 cites W2051339053 @default.
- W3122968430 cites W2101234009 @default.
- W3122968430 cites W2135514714 @default.
- W3122968430 cites W2162929365 @default.
- W3122968430 cites W2282821441 @default.
- W3122968430 cites W2340555101 @default.
- W3122968430 cites W2574518178 @default.
- W3122968430 cites W2615786590 @default.
- W3122968430 cites W2809214204 @default.
- W3122968430 cites W2899771611 @default.
- W3122968430 cites W2964195932 @default.
- W3122968430 cites W2965417983 @default.
- W3122968430 cites W2966171606 @default.
- W3122968430 cites W2967076347 @default.
- W3122968430 cites W3096180801 @default.
- W3122968430 cites W650350307 @default.
- W3122968430 cites W1525783482 @default.
- W3122968430 doi "https://doi.org/10.48550/arxiv.2101.08349" @default.
- W3122968430 hasPublicationYear "2021" @default.
- W3122968430 type Work @default.
- W3122968430 sameAs 3122968430 @default.
- W3122968430 citedByCount "0" @default.
- W3122968430 crossrefType "posted-content" @default.
- W3122968430 hasAuthorship W3122968430A5032219874 @default.
- W3122968430 hasAuthorship W3122968430A5053727798 @default.
- W3122968430 hasAuthorship W3122968430A5083588795 @default.
- W3122968430 hasBestOaLocation W31229684301 @default.
- W3122968430 hasConcept C108583219 @default.
- W3122968430 hasConcept C111919701 @default.
- W3122968430 hasConcept C119857082 @default.
- W3122968430 hasConcept C124101348 @default.
- W3122968430 hasConcept C134306372 @default.
- W3122968430 hasConcept C138673069 @default.
- W3122968430 hasConcept C138885662 @default.
- W3122968430 hasConcept C154945302 @default.
- W3122968430 hasConcept C207685749 @default.
- W3122968430 hasConcept C2522767166 @default.
- W3122968430 hasConcept C33923547 @default.
- W3122968430 hasConcept C36503486 @default.
- W3122968430 hasConcept C41008148 @default.
- W3122968430 hasConcept C41895202 @default.
- W3122968430 hasConcept C75291252 @default.
- W3122968430 hasConcept C75684735 @default.
- W3122968430 hasConceptScore W3122968430C108583219 @default.
- W3122968430 hasConceptScore W3122968430C111919701 @default.
- W3122968430 hasConceptScore W3122968430C119857082 @default.
- W3122968430 hasConceptScore W3122968430C124101348 @default.
- W3122968430 hasConceptScore W3122968430C134306372 @default.
- W3122968430 hasConceptScore W3122968430C138673069 @default.
- W3122968430 hasConceptScore W3122968430C138885662 @default.
- W3122968430 hasConceptScore W3122968430C154945302 @default.
- W3122968430 hasConceptScore W3122968430C207685749 @default.
- W3122968430 hasConceptScore W3122968430C2522767166 @default.
- W3122968430 hasConceptScore W3122968430C33923547 @default.
- W3122968430 hasConceptScore W3122968430C36503486 @default.
- W3122968430 hasConceptScore W3122968430C41008148 @default.
- W3122968430 hasConceptScore W3122968430C41895202 @default.
- W3122968430 hasConceptScore W3122968430C75291252 @default.
- W3122968430 hasConceptScore W3122968430C75684735 @default.
- W3122968430 hasLocation W31229684301 @default.
- W3122968430 hasLocation W31229684302 @default.
- W3122968430 hasOpenAccess W3122968430 @default.
- W3122968430 hasPrimaryLocation W31229684301 @default.
- W3122968430 hasRelatedWork W2348492129 @default.
- W3122968430 hasRelatedWork W2369494673 @default.
- W3122968430 hasRelatedWork W3014300295 @default.
- W3122968430 hasRelatedWork W3176453552 @default.
- W3122968430 hasRelatedWork W3215176293 @default.
- W3122968430 hasRelatedWork W4223943233 @default.
- W3122968430 hasRelatedWork W4252617674 @default.
- W3122968430 hasRelatedWork W4312200629 @default.
- W3122968430 hasRelatedWork W4360585206 @default.
- W3122968430 hasRelatedWork W4364306694 @default.
- W3122968430 isParatext "false" @default.
- W3122968430 isRetracted "false" @default.
- W3122968430 magId "3122968430" @default.
- W3122968430 workType "article" @default.