Matches in SemOpenAlex for { <https://semopenalex.org/work/W3122980091> ?p ?o ?g. }
- W3122980091 endingPage "112237" @default.
- W3122980091 startingPage "112237" @default.
- W3122980091 abstract "Abstract Reliable satellite estimates of chlorophyll-a concentration (Chl-a) are needed in coastal waters for applications such as eutrophication monitoring. However, because of the optical complexity of coastal waters, retrieving accurate Chl-a is still challenging. Many algorithms exist and give quite different performance for different optical conditions but there is no clear definition of the limits of applicability of each algorithm and no clear basis for deciding which algorithm to apply to any given image pixel (reflectance spectrum). Poor quality satellite Chl-a data can easily reach end-users. To remedy this and provide a clear decision on when a specific Chl-a algorithm can be used, we propose simple quality control tests, based on MERIS water leaving reflectance (ρw) bands, to determine on a pixel-by-pixel basis if any of three popular and complementary algorithms can be used. The algorithms being tested are: 1. the OC4 blue-green band ratio algorithm which was designed for open ocean waters; 2. the OC5 algorithm which is based on look-up tables and corrects OC4 overestimation in moderately turbid waters and 3. a near infrared-red (NIR-red) band ratio algorithm designed for eutrophic waters. Using a dataset of 348 in situ Chl-a / MERIS matchups, the conditions for reliable performance of each of the selected algorithms are determined. The approach proposed here looks for the best compromise between the minimization of the relative difference between In situ measurements and satellite estimations and the number of pixels processed. Conditions for a reliable application of OC4 and OC5 depend on ρw412/ρw443 and ρw560, used as proxies of coloured dissolved organic matter and suspended particulate matter (SPM), as compared to ρw560/ρw490, used as a proxy for Chl-a. Conditions for reliable application of the NIR-red band ratio algorithm depend on Chl-a and SPM. These conditions are translated into pixel-based quality control (QC) tests with appropriately chosen thresholds. Results show that by removing data which do not pass QC, the performance of the three selected algorithms is significantly improved. After combining these algorithms, 70% of the dataset could be processed with a median absolute percent difference of 30.5%. The QC tests and algorithm merging methodology were then tested on four MERIS images of European waters. The OC5 algorithm was found to be suitable for most pixels, except in very turbid and eutrophic waters along the coasts where the NIR-red band ratio algorithm helps to fill the gap. Finally, a test was performed on an OLCI-S3A image. Although some validations of water reflectance are still needed for the OLCI sensors, results show similar behavior to the MERIS applications which suggests that when applied to OLCI data the present methodology will help to accurately estimate Chl-a in coastal waters for the next decade." @default.
- W3122980091 created "2021-02-01" @default.
- W3122980091 creator A5006667919 @default.
- W3122980091 creator A5013068989 @default.
- W3122980091 creator A5014460824 @default.
- W3122980091 creator A5055997165 @default.
- W3122980091 creator A5072698982 @default.
- W3122980091 creator A5078962380 @default.
- W3122980091 creator A5087593412 @default.
- W3122980091 date "2021-03-01" @default.
- W3122980091 modified "2023-10-12" @default.
- W3122980091 title "Quality-control tests for OC4, OC5 and NIR-red satellite chlorophyll-a algorithms applied to coastal waters" @default.
- W3122980091 cites W1964654722 @default.
- W3122980091 cites W1969014004 @default.
- W3122980091 cites W1969753304 @default.
- W3122980091 cites W1969782431 @default.
- W3122980091 cites W1975731452 @default.
- W3122980091 cites W1983176515 @default.
- W3122980091 cites W1984530617 @default.
- W3122980091 cites W1992604474 @default.
- W3122980091 cites W1994689062 @default.
- W3122980091 cites W1999676742 @default.
- W3122980091 cites W2005445712 @default.
- W3122980091 cites W2007101051 @default.
- W3122980091 cites W2007319476 @default.
- W3122980091 cites W2009821028 @default.
- W3122980091 cites W2012116092 @default.
- W3122980091 cites W2013399283 @default.
- W3122980091 cites W2018728976 @default.
- W3122980091 cites W2020972217 @default.
- W3122980091 cites W2021306683 @default.
- W3122980091 cites W2026440158 @default.
- W3122980091 cites W2037471737 @default.
- W3122980091 cites W2042040410 @default.
- W3122980091 cites W2043544053 @default.
- W3122980091 cites W2043728386 @default.
- W3122980091 cites W2046138711 @default.
- W3122980091 cites W2052524913 @default.
- W3122980091 cites W2055381602 @default.
- W3122980091 cites W2056252386 @default.
- W3122980091 cites W2057646508 @default.
- W3122980091 cites W2063012028 @default.
- W3122980091 cites W2063020683 @default.
- W3122980091 cites W2067029077 @default.
- W3122980091 cites W2078487286 @default.
- W3122980091 cites W2088665921 @default.
- W3122980091 cites W2095127991 @default.
- W3122980091 cites W2100738276 @default.
- W3122980091 cites W2102276060 @default.
- W3122980091 cites W2118478759 @default.
- W3122980091 cites W2120129362 @default.
- W3122980091 cites W2129932080 @default.
- W3122980091 cites W2137651245 @default.
- W3122980091 cites W2141193993 @default.
- W3122980091 cites W2164526724 @default.
- W3122980091 cites W2168906044 @default.
- W3122980091 cites W2344302910 @default.
- W3122980091 cites W2558673242 @default.
- W3122980091 cites W2604230727 @default.
- W3122980091 cites W2613806236 @default.
- W3122980091 cites W2615064060 @default.
- W3122980091 cites W2808645289 @default.
- W3122980091 cites W2943845795 @default.
- W3122980091 cites W2944923679 @default.
- W3122980091 cites W2972681990 @default.
- W3122980091 cites W3000062237 @default.
- W3122980091 cites W3082928809 @default.
- W3122980091 doi "https://doi.org/10.1016/j.rse.2020.112237" @default.
- W3122980091 hasPublicationYear "2021" @default.
- W3122980091 type Work @default.
- W3122980091 sameAs 3122980091 @default.
- W3122980091 citedByCount "29" @default.
- W3122980091 countsByYear W31229800912021 @default.
- W3122980091 countsByYear W31229800912022 @default.
- W3122980091 countsByYear W31229800912023 @default.
- W3122980091 crossrefType "journal-article" @default.
- W3122980091 hasAuthorship W3122980091A5006667919 @default.
- W3122980091 hasAuthorship W3122980091A5013068989 @default.
- W3122980091 hasAuthorship W3122980091A5014460824 @default.
- W3122980091 hasAuthorship W3122980091A5055997165 @default.
- W3122980091 hasAuthorship W3122980091A5072698982 @default.
- W3122980091 hasAuthorship W3122980091A5078962380 @default.
- W3122980091 hasAuthorship W3122980091A5087593412 @default.
- W3122980091 hasBestOaLocation W31229800911 @default.
- W3122980091 hasConcept C11413529 @default.
- W3122980091 hasConcept C121332964 @default.
- W3122980091 hasConcept C127313418 @default.
- W3122980091 hasConcept C1276947 @default.
- W3122980091 hasConcept C19269812 @default.
- W3122980091 hasConcept C2779530757 @default.
- W3122980091 hasConcept C39432304 @default.
- W3122980091 hasConcept C41008148 @default.
- W3122980091 hasConcept C62520636 @default.
- W3122980091 hasConcept C62649853 @default.
- W3122980091 hasConceptScore W3122980091C11413529 @default.
- W3122980091 hasConceptScore W3122980091C121332964 @default.
- W3122980091 hasConceptScore W3122980091C127313418 @default.
- W3122980091 hasConceptScore W3122980091C1276947 @default.