Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123012394> ?p ?o ?g. }
- W3123012394 endingPage "380" @default.
- W3123012394 startingPage "352" @default.
- W3123012394 abstract "We consider a new, flexible and easy-to-implement method to estimate thecausal effects of an intervention on a single treated unit when a control group is not available and which nests previous proposals in the literature. It is a two-step methodology where in the first stage, a counterfactual is estimated based on a large-dimensional set of variables from a pool of untreated units by means of shrinkage methods, such as the least absolute shrinkage and selection operator (LASSO). In the second stage, we estimate the average intervention effect on a vector of variables, which is consistent and asymptotically normal. Our results are valid uniformly over a wide class of probability laws. We show that these results hold even when the exact date of the intervention is unknown. Tests for multiple interventions and for contamination effects are derived. By a simple transformation of the variables, it is possible to test for multivariate intervention effects on several moments of the variables of interest. Existing methods in the literature usually test for intervention effects on a single variable and assume that the time of the intervention is known. In addition, high-dimensionality is frequently ignored and inference is either conducted under a set of more stringent hypotheses and/or by permutation tests. A Monte Carlo experiment evaluates the properties of the method in finite samples and compares it with other alternatives. As an application, we evaluate the effects on inflation, GDP growth, retail sales and credit of an anti tax-evasion program." @default.
- W3123012394 created "2021-02-01" @default.
- W3123012394 creator A5058125982 @default.
- W3123012394 creator A5066109013 @default.
- W3123012394 creator A5081882952 @default.
- W3123012394 date "2018-12-01" @default.
- W3123012394 modified "2023-09-25" @default.
- W3123012394 title "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data" @default.
- W3123012394 cites W1133592075 @default.
- W3123012394 cites W1491711721 @default.
- W3123012394 cites W1568329098 @default.
- W3123012394 cites W1570069945 @default.
- W3123012394 cites W1944038669 @default.
- W3123012394 cites W1973509780 @default.
- W3123012394 cites W1975338837 @default.
- W3123012394 cites W1995837384 @default.
- W3123012394 cites W2003035876 @default.
- W3123012394 cites W2019473361 @default.
- W3123012394 cites W2020925091 @default.
- W3123012394 cites W2022313490 @default.
- W3123012394 cites W2022943305 @default.
- W3123012394 cites W2047326456 @default.
- W3123012394 cites W2064997337 @default.
- W3123012394 cites W2077979927 @default.
- W3123012394 cites W2080807621 @default.
- W3123012394 cites W2097636528 @default.
- W3123012394 cites W2101586171 @default.
- W3123012394 cites W2108446661 @default.
- W3123012394 cites W2117178635 @default.
- W3123012394 cites W2120846249 @default.
- W3123012394 cites W2126555709 @default.
- W3123012394 cites W2128249713 @default.
- W3123012394 cites W2143201948 @default.
- W3123012394 cites W2152371829 @default.
- W3123012394 cites W2170775246 @default.
- W3123012394 cites W2171656257 @default.
- W3123012394 cites W2179874418 @default.
- W3123012394 cites W2234145714 @default.
- W3123012394 cites W2254851489 @default.
- W3123012394 cites W2331253396 @default.
- W3123012394 cites W2556332197 @default.
- W3123012394 cites W2789198790 @default.
- W3123012394 cites W2952150717 @default.
- W3123012394 cites W3021520665 @default.
- W3123012394 cites W3121415235 @default.
- W3123012394 cites W3125057276 @default.
- W3123012394 cites W3125486125 @default.
- W3123012394 doi "https://doi.org/10.1016/j.jeconom.2018.07.005" @default.
- W3123012394 hasPublicationYear "2018" @default.
- W3123012394 type Work @default.
- W3123012394 sameAs 3123012394 @default.
- W3123012394 citedByCount "47" @default.
- W3123012394 countsByYear W31230123942016 @default.
- W3123012394 countsByYear W31230123942017 @default.
- W3123012394 countsByYear W31230123942018 @default.
- W3123012394 countsByYear W31230123942019 @default.
- W3123012394 countsByYear W31230123942020 @default.
- W3123012394 countsByYear W31230123942021 @default.
- W3123012394 countsByYear W31230123942022 @default.
- W3123012394 countsByYear W31230123942023 @default.
- W3123012394 crossrefType "journal-article" @default.
- W3123012394 hasAuthorship W3123012394A5058125982 @default.
- W3123012394 hasAuthorship W3123012394A5066109013 @default.
- W3123012394 hasAuthorship W3123012394A5081882952 @default.
- W3123012394 hasBestOaLocation W31230123942 @default.
- W3123012394 hasConcept C105795698 @default.
- W3123012394 hasConcept C108650721 @default.
- W3123012394 hasConcept C111030470 @default.
- W3123012394 hasConcept C111472728 @default.
- W3123012394 hasConcept C138885662 @default.
- W3123012394 hasConcept C149782125 @default.
- W3123012394 hasConcept C19499675 @default.
- W3123012394 hasConcept C33923547 @default.
- W3123012394 hasConcept C87007009 @default.
- W3123012394 hasConceptScore W3123012394C105795698 @default.
- W3123012394 hasConceptScore W3123012394C108650721 @default.
- W3123012394 hasConceptScore W3123012394C111030470 @default.
- W3123012394 hasConceptScore W3123012394C111472728 @default.
- W3123012394 hasConceptScore W3123012394C138885662 @default.
- W3123012394 hasConceptScore W3123012394C149782125 @default.
- W3123012394 hasConceptScore W3123012394C19499675 @default.
- W3123012394 hasConceptScore W3123012394C33923547 @default.
- W3123012394 hasConceptScore W3123012394C87007009 @default.
- W3123012394 hasFunder F4320322025 @default.
- W3123012394 hasFunder F4320322749 @default.
- W3123012394 hasIssue "2" @default.
- W3123012394 hasLocation W31230123941 @default.
- W3123012394 hasLocation W31230123942 @default.
- W3123012394 hasLocation W31230123943 @default.
- W3123012394 hasOpenAccess W3123012394 @default.
- W3123012394 hasPrimaryLocation W31230123941 @default.
- W3123012394 hasRelatedWork W1565502317 @default.
- W3123012394 hasRelatedWork W1976089490 @default.
- W3123012394 hasRelatedWork W2064672499 @default.
- W3123012394 hasRelatedWork W2076512264 @default.
- W3123012394 hasRelatedWork W2283558752 @default.
- W3123012394 hasRelatedWork W2582133354 @default.
- W3123012394 hasRelatedWork W3122704923 @default.