Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123062815> ?p ?o ?g. }
- W3123062815 endingPage "2607" @default.
- W3123062815 startingPage "2598" @default.
- W3123062815 abstract "Clozapine is an anti-psychotic drug that is known to be effective in the treatment of patients with chronic treatment-resistant schizophrenia (TRS-SCZ), commonly estimated to be around one third of all cases. However, clinicians sometimes delay the initiation of this drug because of its adverse side-effects. Therefore, identification of predictive biological markers of clozapine response are extremely valuable to aid on-time initiation of treatment. In this study, we develop a machine learning (ML) algorithm based on pre-treatment electroencephalogram (EEG) data sets to predict response to clozapine treatment in 57 TRS-SCZs, where the treatment outcome, after at least one-year follow-up is determined using the positive and negative syndrome scale (PANSS). The ML algorithm has three steps: 1) a brain source localization (BSL) procedure using the linearly constrained minimum variance (LCMV) beamforming approach is employed on the EEG signals to extract source waveforms from 30 specified brain regions. 2) An effective connectivity measure named symbolic transfer entropy (STE) is applied to the source waveforms. 3) A ML algorithm is applied to the STE matrix to determine whether a set of features can be found to discriminate most-responder (MR) SCZ patients from least-responder (LR) ones. The findings of this study reveal that STE features can achieve an accuracy of 95.83%. This finding implies that analysis of pre-treatment EEG could contribute to our ability to distinguish MR from LR SCZs, and that the source STE matrix may prove to be a promising tool for the prediction of the clinical response to clozapine." @default.
- W3123062815 created "2021-02-01" @default.
- W3123062815 creator A5008630587 @default.
- W3123062815 creator A5045627956 @default.
- W3123062815 creator A5061471855 @default.
- W3123062815 creator A5062721969 @default.
- W3123062815 creator A5083783070 @default.
- W3123062815 date "2020-12-01" @default.
- W3123062815 modified "2023-09-27" @default.
- W3123062815 title "A Machine Learning Approach Using Effective Connectivity to Predict Response to Clozapine Treatment" @default.
- W3123062815 cites W1967034969 @default.
- W3123062815 cites W1975297598 @default.
- W3123062815 cites W1985746609 @default.
- W3123062815 cites W1988095746 @default.
- W3123062815 cites W1998741299 @default.
- W3123062815 cites W2003194699 @default.
- W3123062815 cites W2004737206 @default.
- W3123062815 cites W2005821483 @default.
- W3123062815 cites W2006687001 @default.
- W3123062815 cites W2010741226 @default.
- W3123062815 cites W2014502281 @default.
- W3123062815 cites W2017408522 @default.
- W3123062815 cites W2031786430 @default.
- W3123062815 cites W2037420423 @default.
- W3123062815 cites W2043729845 @default.
- W3123062815 cites W2049466097 @default.
- W3123062815 cites W2053154970 @default.
- W3123062815 cites W2055542765 @default.
- W3123062815 cites W2056168656 @default.
- W3123062815 cites W2057808255 @default.
- W3123062815 cites W2065919982 @default.
- W3123062815 cites W2066537321 @default.
- W3123062815 cites W2067348345 @default.
- W3123062815 cites W2071044018 @default.
- W3123062815 cites W2077491345 @default.
- W3123062815 cites W2078204079 @default.
- W3123062815 cites W2081590377 @default.
- W3123062815 cites W2085360366 @default.
- W3123062815 cites W2089688017 @default.
- W3123062815 cites W2090449567 @default.
- W3123062815 cites W2108968692 @default.
- W3123062815 cites W2108995755 @default.
- W3123062815 cites W2113431893 @default.
- W3123062815 cites W2120078534 @default.
- W3123062815 cites W2124497126 @default.
- W3123062815 cites W2126767504 @default.
- W3123062815 cites W2127772714 @default.
- W3123062815 cites W2134761508 @default.
- W3123062815 cites W2138231636 @default.
- W3123062815 cites W2142858796 @default.
- W3123062815 cites W2143961246 @default.
- W3123062815 cites W2145309136 @default.
- W3123062815 cites W2147607079 @default.
- W3123062815 cites W2147899888 @default.
- W3123062815 cites W2154053567 @default.
- W3123062815 cites W2171371954 @default.
- W3123062815 cites W2178225550 @default.
- W3123062815 cites W2305448524 @default.
- W3123062815 cites W2329708303 @default.
- W3123062815 cites W2399802070 @default.
- W3123062815 cites W2480676497 @default.
- W3123062815 cites W2578041951 @default.
- W3123062815 cites W2810840403 @default.
- W3123062815 cites W2944053345 @default.
- W3123062815 cites W2962817988 @default.
- W3123062815 cites W3004127313 @default.
- W3123062815 cites W3023943905 @default.
- W3123062815 cites W2004230937 @default.
- W3123062815 doi "https://doi.org/10.1109/tnsre.2020.3019685" @default.
- W3123062815 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33513093" @default.
- W3123062815 hasPublicationYear "2020" @default.
- W3123062815 type Work @default.
- W3123062815 sameAs 3123062815 @default.
- W3123062815 citedByCount "10" @default.
- W3123062815 countsByYear W31230628152021 @default.
- W3123062815 countsByYear W31230628152022 @default.
- W3123062815 countsByYear W31230628152023 @default.
- W3123062815 crossrefType "journal-article" @default.
- W3123062815 hasAuthorship W3123062815A5008630587 @default.
- W3123062815 hasAuthorship W3123062815A5045627956 @default.
- W3123062815 hasAuthorship W3123062815A5061471855 @default.
- W3123062815 hasAuthorship W3123062815A5062721969 @default.
- W3123062815 hasAuthorship W3123062815A5083783070 @default.
- W3123062815 hasConcept C118552586 @default.
- W3123062815 hasConcept C119857082 @default.
- W3123062815 hasConcept C153180895 @default.
- W3123062815 hasConcept C154945302 @default.
- W3123062815 hasConcept C15744967 @default.
- W3123062815 hasConcept C182049051 @default.
- W3123062815 hasConcept C199360897 @default.
- W3123062815 hasConcept C2776412080 @default.
- W3123062815 hasConcept C2779727114 @default.
- W3123062815 hasConcept C2780135775 @default.
- W3123062815 hasConcept C2780864610 @default.
- W3123062815 hasConcept C41008148 @default.
- W3123062815 hasConcept C522805319 @default.
- W3123062815 hasConcept C9679016 @default.
- W3123062815 hasConceptScore W3123062815C118552586 @default.