Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123235216> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3123235216 startingPage "349" @default.
- W3123235216 abstract "ABSTRACT Performance measures such as the Sharpe ratio and the information ratio are estimation subject to estimation error. Lo (2002) derives the explicit expressions for the statistical distribution of the Sharpe ratio. Bertrand and Protopopescu (2007) have extended his work to the bivariate case which corresponds to the Information ratio. In the present paper, we analyze the effects of skewness and kurtosis of portfolio and benchmark returns on the precision of the estimation of the Sharpe ratio and of the information ratio. We show that these effects are in line with what decision theory suggests about preferences of investors about skewness and kurtosis. Moreover, these effects are significant and can disturb the performance evaluation process if they are neglected. JEL classification: G11, G12, C10 Keywords: Sharpe ratio; Information ratio; Asymptotic distribution; Skewness; Kurtosis; Comparative static (ProQuest: ... denotes formulae omitted.) I. INTRODUCTION Investment management industry provides investors with performance measures based on some capital market theory. Two of the most popular performance measures are the Sharpe (1966,1994) ratio and the information ratio. The common practice in the money managers industry is to impose a limit on the volatility of the deviation of the active portfolio from the benchmark, namely on the tracking error volatility (TEV). The pioneer of this approach is Roll (1992). This setup leads naturally to the use of information ratios (IR), as a performance measure, defined as the ratios of the portfolio excess return over his benchmark to its TEV. In a recent paper, Lo (2002) derives the explicit expressions for the statistical distribution of the Sharpe ratio using the standard asymptotic theory under several sets of assumptions for the return-generating process. Bertrand and Protopopescu (2007) (hereafter, BP (2007)) have extended his work to the information ratio (IR), assuming that each return generating process is i.i.d. while allowing however for cross-correlation between the returns. In the present paper, we analyze the effects of skewness and kurtosis of portfolio and benchmark returns on the precision of the estimation of the Sharpe ratio and of the information ratio. In a first section, we recall a result from Lo (2002) and gives another proof for the derivation of the asymptotic variance of the Sharpe ratio statistics, SR, when the returns are supposed to be i.i.d. Then, we recall briefly two results from BP (2007). In a second section, we analyze the effects of skewness and kurtosis on the variance of the Sharpe ratio and of the information ratio. We show that these effects are in line with what decision theory suggests about preferences of investors about skewness and kurtosis. Moreover, these effects are significant and can disturb the performance evaluation process if they are neglected. II. ASYMPTOTIC VARIANCE OF PERFORMANCE MEASURES A. The Sharpe Ratio Let R^sub t^ denote the one-period simple return of a portfolio. Its mean and variance, µ and σ^sup 2^, are given by: µ=E(R^sub t^) and σ^sup 2^=Var(R^sub t^) Recall that the Sharpe ratio (SR) is defined as the ratio of the excess expected return (relative to the risk-free rate, r) to the standard deviation of return: ... As recall by Lo (2002), µ and σ are the population moments of the distribution of R^sub t^. As such, they are unobservable and must be estimated statistically using historical data and are, therefore, subject to estimation error. He then derives explicit expressions for the statistical distribution of the Sharpe ratio using standard asymptotic theory under several sets of assumptions for the return-generating process. In particular, Lo has established that the standard error of the Sharpe ratio (SR) in the i.i.d. case1 is given by: . …" @default.
- W3123235216 created "2021-02-01" @default.
- W3123235216 creator A5003684973 @default.
- W3123235216 creator A5037344124 @default.
- W3123235216 date "2008-07-01" @default.
- W3123235216 modified "2023-09-28" @default.
- W3123235216 title "The Sensitivity of the Asymptotic Variance of Performance Measures with Respect to Skewness and Kurtosis" @default.
- W3123235216 cites W1995808291 @default.
- W3123235216 cites W2153580489 @default.
- W3123235216 cites W2176146775 @default.
- W3123235216 hasPublicationYear "2008" @default.
- W3123235216 type Work @default.
- W3123235216 sameAs 3123235216 @default.
- W3123235216 citedByCount "1" @default.
- W3123235216 crossrefType "journal-article" @default.
- W3123235216 hasAuthorship W3123235216A5003684973 @default.
- W3123235216 hasAuthorship W3123235216A5037344124 @default.
- W3123235216 hasConcept C103659442 @default.
- W3123235216 hasConcept C105795698 @default.
- W3123235216 hasConcept C106159729 @default.
- W3123235216 hasConcept C122342681 @default.
- W3123235216 hasConcept C139938925 @default.
- W3123235216 hasConcept C149782125 @default.
- W3123235216 hasConcept C162324750 @default.
- W3123235216 hasConcept C166963901 @default.
- W3123235216 hasConcept C181236170 @default.
- W3123235216 hasConcept C2777302077 @default.
- W3123235216 hasConcept C2780821815 @default.
- W3123235216 hasConcept C33923547 @default.
- W3123235216 hasConcept C91602232 @default.
- W3123235216 hasConceptScore W3123235216C103659442 @default.
- W3123235216 hasConceptScore W3123235216C105795698 @default.
- W3123235216 hasConceptScore W3123235216C106159729 @default.
- W3123235216 hasConceptScore W3123235216C122342681 @default.
- W3123235216 hasConceptScore W3123235216C139938925 @default.
- W3123235216 hasConceptScore W3123235216C149782125 @default.
- W3123235216 hasConceptScore W3123235216C162324750 @default.
- W3123235216 hasConceptScore W3123235216C166963901 @default.
- W3123235216 hasConceptScore W3123235216C181236170 @default.
- W3123235216 hasConceptScore W3123235216C2777302077 @default.
- W3123235216 hasConceptScore W3123235216C2780821815 @default.
- W3123235216 hasConceptScore W3123235216C33923547 @default.
- W3123235216 hasConceptScore W3123235216C91602232 @default.
- W3123235216 hasIssue "4" @default.
- W3123235216 hasOpenAccess W3123235216 @default.
- W3123235216 hasRelatedWork W1491077224 @default.
- W3123235216 hasRelatedWork W1933582777 @default.
- W3123235216 hasRelatedWork W2053757775 @default.
- W3123235216 hasRelatedWork W2074855252 @default.
- W3123235216 hasRelatedWork W2238830402 @default.
- W3123235216 hasRelatedWork W2269097861 @default.
- W3123235216 hasRelatedWork W2521536828 @default.
- W3123235216 hasRelatedWork W2580475985 @default.
- W3123235216 hasRelatedWork W2745613715 @default.
- W3123235216 hasRelatedWork W2766964708 @default.
- W3123235216 hasRelatedWork W2784907868 @default.
- W3123235216 hasRelatedWork W2952073717 @default.
- W3123235216 hasRelatedWork W3019835650 @default.
- W3123235216 hasRelatedWork W3098711056 @default.
- W3123235216 hasRelatedWork W3122684163 @default.
- W3123235216 hasRelatedWork W3125150880 @default.
- W3123235216 hasRelatedWork W3126052377 @default.
- W3123235216 hasRelatedWork W3168965800 @default.
- W3123235216 hasRelatedWork W3209641455 @default.
- W3123235216 hasRelatedWork W2157295876 @default.
- W3123235216 hasVolume "13" @default.
- W3123235216 isParatext "false" @default.
- W3123235216 isRetracted "false" @default.
- W3123235216 magId "3123235216" @default.
- W3123235216 workType "article" @default.