Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123377592> ?p ?o ?g. }
- W3123377592 endingPage "9" @default.
- W3123377592 startingPage "1" @default.
- W3123377592 abstract "A recurrent neural network (RNN) and its variants such as gated recurrent unit-based RNN (GRU-RNN) were found to be very suitable for dose-volume histogram (DVH) prediction in our previously published work. Using the dosimetric information generated by nonmodulated beams of different orientations, the GRU-RNN model was capable of accurate DVH prediction for nasopharyngeal carcinoma (NPC) treatment planning. On the basis of our previous work, we proposed an improved approach and aimed to further improve the DVH prediction accuracy as well as study the feasibility of applying the proposed method to relatively small-size patient data.Eighty NPC volumetric modulated arc therapy (VMAT) plans with local IRB's approval in recent two years were retrospectively and randomly selected in this study. All these original plans were created using the Eclipse treatment planning system (V13.5, Varian Medical Systems, USA) with ≥95% of PGTVnx receiving the prescribed doses of 70 Gy, ≥95% of PGTVnd receiving 66 Gy, and ≥95% of PTV receiving 60 Gy. Among them, fifty plans were used to train the DVH prediction model, and the remaining were used for testing. On the basis of our previously published work, we simplified the 3-layer GRU-RNN model to a single-layer model and further trained every organ at risk (OAR) separately with an OAR-specific equivalent uniform dose- (EUD-) based loss function.The results of linear least squares regression obtained by the new proposed method showed the excellent agreements between the predictions and the original plans with the correlation coefficient r = 0.976 and 0.968 for EUD results and maximum dose results, respectively, and the coefficient r of our previously published method was 0.957 and 0.946, respectively. The Wilcoxon signed-rank test results between the proposed and the previous work showed that the proposed method could significantly improve the EUD prediction accuracy for the brainstem, spinal cord, and temporal lobes with a p value < 0.01.The accuracy of DVH prediction achieved in different OARs showed the great improvements compared to the previous works, and more importantly, the effectiveness and robustness showed by the simplified GRU-RNN trained from relatively small-size DVH samples, fully demonstrated the feasibility of applying the proposed method to small-size patient data. Excellent agreements in both EUD results and maximum dose results between the predictions and original plans indicated the application prospect in a physically and biologically related (or a mixture of both) model for treatment planning." @default.
- W3123377592 created "2021-02-01" @default.
- W3123377592 creator A5005651514 @default.
- W3123377592 creator A5010466371 @default.
- W3123377592 creator A5027610105 @default.
- W3123377592 creator A5046209435 @default.
- W3123377592 creator A5055303244 @default.
- W3123377592 creator A5086187557 @default.
- W3123377592 date "2021-01-19" @default.
- W3123377592 modified "2023-10-15" @default.
- W3123377592 title "DVH Prediction for VMAT in NPC with GRU-RNN: An Improved Method by Considering Biological Effects" @default.
- W3123377592 cites W1963932209 @default.
- W3123377592 cites W1978752707 @default.
- W3123377592 cites W2017276054 @default.
- W3123377592 cites W2017857032 @default.
- W3123377592 cites W2061629820 @default.
- W3123377592 cites W2069905590 @default.
- W3123377592 cites W2071871382 @default.
- W3123377592 cites W2078998933 @default.
- W3123377592 cites W2131034218 @default.
- W3123377592 cites W2164718209 @default.
- W3123377592 cites W2196898084 @default.
- W3123377592 cites W2219768249 @default.
- W3123377592 cites W2258848048 @default.
- W3123377592 cites W2346563756 @default.
- W3123377592 cites W2464306416 @default.
- W3123377592 cites W2608489513 @default.
- W3123377592 cites W2803494435 @default.
- W3123377592 cites W2898515460 @default.
- W3123377592 cites W2898757811 @default.
- W3123377592 cites W2900148384 @default.
- W3123377592 cites W2903626699 @default.
- W3123377592 cites W2904732647 @default.
- W3123377592 cites W2945203668 @default.
- W3123377592 cites W2974184907 @default.
- W3123377592 cites W2981637131 @default.
- W3123377592 cites W2984983445 @default.
- W3123377592 cites W2986516845 @default.
- W3123377592 cites W2998280826 @default.
- W3123377592 cites W3085174984 @default.
- W3123377592 cites W3101571117 @default.
- W3123377592 cites W3102799385 @default.
- W3123377592 cites W3105594088 @default.
- W3123377592 doi "https://doi.org/10.1155/2021/2043830" @default.
- W3123377592 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7837766" @default.
- W3123377592 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33532489" @default.
- W3123377592 hasPublicationYear "2021" @default.
- W3123377592 type Work @default.
- W3123377592 sameAs 3123377592 @default.
- W3123377592 citedByCount "3" @default.
- W3123377592 countsByYear W31233775922021 @default.
- W3123377592 countsByYear W31233775922022 @default.
- W3123377592 countsByYear W31233775922023 @default.
- W3123377592 crossrefType "journal-article" @default.
- W3123377592 hasAuthorship W3123377592A5005651514 @default.
- W3123377592 hasAuthorship W3123377592A5010466371 @default.
- W3123377592 hasAuthorship W3123377592A5027610105 @default.
- W3123377592 hasAuthorship W3123377592A5046209435 @default.
- W3123377592 hasAuthorship W3123377592A5055303244 @default.
- W3123377592 hasAuthorship W3123377592A5086187557 @default.
- W3123377592 hasBestOaLocation W31233775921 @default.
- W3123377592 hasConcept C115961682 @default.
- W3123377592 hasConcept C126838900 @default.
- W3123377592 hasConcept C147168706 @default.
- W3123377592 hasConcept C154945302 @default.
- W3123377592 hasConcept C201645570 @default.
- W3123377592 hasConcept C2778997737 @default.
- W3123377592 hasConcept C2989005 @default.
- W3123377592 hasConcept C41008148 @default.
- W3123377592 hasConcept C50644808 @default.
- W3123377592 hasConcept C509974204 @default.
- W3123377592 hasConcept C53533937 @default.
- W3123377592 hasConcept C71924100 @default.
- W3123377592 hasConceptScore W3123377592C115961682 @default.
- W3123377592 hasConceptScore W3123377592C126838900 @default.
- W3123377592 hasConceptScore W3123377592C147168706 @default.
- W3123377592 hasConceptScore W3123377592C154945302 @default.
- W3123377592 hasConceptScore W3123377592C201645570 @default.
- W3123377592 hasConceptScore W3123377592C2778997737 @default.
- W3123377592 hasConceptScore W3123377592C2989005 @default.
- W3123377592 hasConceptScore W3123377592C41008148 @default.
- W3123377592 hasConceptScore W3123377592C50644808 @default.
- W3123377592 hasConceptScore W3123377592C509974204 @default.
- W3123377592 hasConceptScore W3123377592C53533937 @default.
- W3123377592 hasConceptScore W3123377592C71924100 @default.
- W3123377592 hasFunder F4320335767 @default.
- W3123377592 hasLocation W31233775921 @default.
- W3123377592 hasLocation W31233775922 @default.
- W3123377592 hasLocation W31233775923 @default.
- W3123377592 hasLocation W31233775924 @default.
- W3123377592 hasOpenAccess W3123377592 @default.
- W3123377592 hasPrimaryLocation W31233775921 @default.
- W3123377592 hasRelatedWork W2170413290 @default.
- W3123377592 hasRelatedWork W2349233961 @default.
- W3123377592 hasRelatedWork W2370948200 @default.
- W3123377592 hasRelatedWork W2376685974 @default.
- W3123377592 hasRelatedWork W2376888776 @default.
- W3123377592 hasRelatedWork W2385590204 @default.