Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123671946> ?p ?o ?g. }
- W3123671946 endingPage "14548" @default.
- W3123671946 startingPage "14540" @default.
- W3123671946 abstract "Identification of single-cell subtypes is one of the fundamental processes required to understand a heterogeneous population composed of multiple cells, based on single-cell RNA sequencing data. Previously, cell subtype identification was mainly carried out by dimension reduction and clustering approaches that grouped cells with similar expressed profiles together. However, for high robustness to noises and systematic annotation of the subtype in each cell, supervised classification approaches have been widely used. Recently, deep neural network (DNN) models have been widely presented in various fields, including biology. By capturing the composite relationship between sample features and target outcomes, a DNN model enables significant performance improvements in biological data mining analyses. In this paper, we constructed a DNN model, called scDAE for single-cell subtype identification combined with representative feature extraction using a multilayer denoising autoencoder (DAE). The feature sets were learned by the DAE and were further tuned by fully connected layers using a softmax classifier. The model was compared against four state-of-the-art cell subtype identification methods and two conventional machine learning algorithms. From multiple tests, scDAE significantly outperformed competing methods especially on data sets having a large number of cell subtypes and noises. Extracted cell features from the proposed model were clearly clustered with respect to subtype. The results of the experiments indicated that our proposed model is effective in identifying single-cell subtypes and molecular signatures representative of each cell subtype. scDAE is publicly available at https://github.com/cbi-bioinfo/scDAE ." @default.
- W3123671946 created "2021-02-01" @default.
- W3123671946 creator A5012207088 @default.
- W3123671946 creator A5030762704 @default.
- W3123671946 creator A5080551816 @default.
- W3123671946 date "2021-01-01" @default.
- W3123671946 modified "2023-10-18" @default.
- W3123671946 title "Cell Subtype Classification via Representation Learning Based on a Denoising Autoencoder for Single-Cell RNA Sequencing" @default.
- W3123671946 cites W1596717185 @default.
- W3123671946 cites W1813068103 @default.
- W3123671946 cites W1967327758 @default.
- W3123671946 cites W1985987855 @default.
- W3123671946 cites W2020541351 @default.
- W3123671946 cites W2030017878 @default.
- W3123671946 cites W2036109700 @default.
- W3123671946 cites W2109890799 @default.
- W3123671946 cites W2111547563 @default.
- W3123671946 cites W2140258573 @default.
- W3123671946 cites W2179438025 @default.
- W3123671946 cites W2259632819 @default.
- W3123671946 cites W2342423616 @default.
- W3123671946 cites W2507880739 @default.
- W3123671946 cites W2523369352 @default.
- W3123671946 cites W2523419694 @default.
- W3123671946 cites W2523620612 @default.
- W3123671946 cites W2526262591 @default.
- W3123671946 cites W2610332124 @default.
- W3123671946 cites W2610509384 @default.
- W3123671946 cites W2612502013 @default.
- W3123671946 cites W2735897797 @default.
- W3123671946 cites W2741564801 @default.
- W3123671946 cites W2760692740 @default.
- W3123671946 cites W2763051133 @default.
- W3123671946 cites W2788348358 @default.
- W3123671946 cites W2789949350 @default.
- W3123671946 cites W2791624046 @default.
- W3123671946 cites W2793258150 @default.
- W3123671946 cites W2795687816 @default.
- W3123671946 cites W2796170779 @default.
- W3123671946 cites W2801820889 @default.
- W3123671946 cites W2886347923 @default.
- W3123671946 cites W2901677030 @default.
- W3123671946 cites W2918882492 @default.
- W3123671946 cites W2937917790 @default.
- W3123671946 cites W2951029718 @default.
- W3123671946 cites W2951914955 @default.
- W3123671946 cites W2952001873 @default.
- W3123671946 cites W2971398276 @default.
- W3123671946 cites W2973034691 @default.
- W3123671946 cites W2984629040 @default.
- W3123671946 cites W2995410603 @default.
- W3123671946 cites W3105657793 @default.
- W3123671946 cites W4245863050 @default.
- W3123671946 cites W4253759977 @default.
- W3123671946 doi "https://doi.org/10.1109/access.2021.3052923" @default.
- W3123671946 hasPublicationYear "2021" @default.
- W3123671946 type Work @default.
- W3123671946 sameAs 3123671946 @default.
- W3123671946 citedByCount "3" @default.
- W3123671946 countsByYear W31236719462022 @default.
- W3123671946 countsByYear W31236719462023 @default.
- W3123671946 crossrefType "journal-article" @default.
- W3123671946 hasAuthorship W3123671946A5012207088 @default.
- W3123671946 hasAuthorship W3123671946A5030762704 @default.
- W3123671946 hasAuthorship W3123671946A5080551816 @default.
- W3123671946 hasBestOaLocation W31236719461 @default.
- W3123671946 hasConcept C101738243 @default.
- W3123671946 hasConcept C108583219 @default.
- W3123671946 hasConcept C1491633281 @default.
- W3123671946 hasConcept C153180895 @default.
- W3123671946 hasConcept C154945302 @default.
- W3123671946 hasConcept C17744445 @default.
- W3123671946 hasConcept C199539241 @default.
- W3123671946 hasConcept C2776359362 @default.
- W3123671946 hasConcept C41008148 @default.
- W3123671946 hasConcept C54355233 @default.
- W3123671946 hasConcept C70721500 @default.
- W3123671946 hasConcept C86803240 @default.
- W3123671946 hasConcept C94625758 @default.
- W3123671946 hasConceptScore W3123671946C101738243 @default.
- W3123671946 hasConceptScore W3123671946C108583219 @default.
- W3123671946 hasConceptScore W3123671946C1491633281 @default.
- W3123671946 hasConceptScore W3123671946C153180895 @default.
- W3123671946 hasConceptScore W3123671946C154945302 @default.
- W3123671946 hasConceptScore W3123671946C17744445 @default.
- W3123671946 hasConceptScore W3123671946C199539241 @default.
- W3123671946 hasConceptScore W3123671946C2776359362 @default.
- W3123671946 hasConceptScore W3123671946C41008148 @default.
- W3123671946 hasConceptScore W3123671946C54355233 @default.
- W3123671946 hasConceptScore W3123671946C70721500 @default.
- W3123671946 hasConceptScore W3123671946C86803240 @default.
- W3123671946 hasConceptScore W3123671946C94625758 @default.
- W3123671946 hasFunder F4320322035 @default.
- W3123671946 hasFunder F4320322120 @default.
- W3123671946 hasLocation W31236719461 @default.
- W3123671946 hasOpenAccess W3123671946 @default.
- W3123671946 hasPrimaryLocation W31236719461 @default.
- W3123671946 hasRelatedWork W2669956259 @default.