Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123699722> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3123699722 endingPage "15730" @default.
- W3123699722 startingPage "15720" @default.
- W3123699722 abstract "A significant task of automatic diagnosis for radiology imaging, especially for chest X-rays, is to identify disease types, which can be viewed as a multi-label learning problem. Prior state-of-the-art approaches adopted the graph convolutional network to model the correlations among disease labels. However, the utilization of medical reports paired with radiology images is neglected in such approaches. Hence, at least two novel improvements are proposed in this paper. First, disease label embeddings are pre-trained on the total radiology reports, and these semantic features along with encoded X-ray features are fused in a transformer encoder for graph initialization. Second, to expand the representation ability of the graph, extra medical terms from radiology reports are mined and added to the graph model as auxiliary nodes without changing the size of the output space. Experiments conducted on two public chest-X-ray datasets demonstrate the outstanding performance over compared models and the advantages of the proposed improvements." @default.
- W3123699722 created "2021-02-01" @default.
- W3123699722 creator A5016639142 @default.
- W3123699722 creator A5061456829 @default.
- W3123699722 creator A5078420686 @default.
- W3123699722 date "2021-01-01" @default.
- W3123699722 modified "2023-10-14" @default.
- W3123699722 title "Multi-Label Learning With Visual-Semantic Embedded Knowledge Graph for Diagnosis of Radiology Imaging" @default.
- W3123699722 cites W1986159170 @default.
- W3123699722 cites W2054021026 @default.
- W3123699722 cites W2101491865 @default.
- W3123699722 cites W2114315281 @default.
- W3123699722 cites W2129026672 @default.
- W3123699722 cites W2152772232 @default.
- W3123699722 cites W2789813974 @default.
- W3123699722 cites W2932399282 @default.
- W3123699722 cites W2962838801 @default.
- W3123699722 cites W2962946486 @default.
- W3123699722 cites W2963052338 @default.
- W3123699722 cites W2963446712 @default.
- W3123699722 cites W2963466845 @default.
- W3123699722 cites W2963631426 @default.
- W3123699722 cites W2963745697 @default.
- W3123699722 cites W2985331920 @default.
- W3123699722 cites W2997704374 @default.
- W3123699722 cites W3002476946 @default.
- W3123699722 cites W3003268084 @default.
- W3123699722 cites W3088517856 @default.
- W3123699722 cites W3101156210 @default.
- W3123699722 cites W4210257598 @default.
- W3123699722 doi "https://doi.org/10.1109/access.2021.3052794" @default.
- W3123699722 hasPublicationYear "2021" @default.
- W3123699722 type Work @default.
- W3123699722 sameAs 3123699722 @default.
- W3123699722 citedByCount "12" @default.
- W3123699722 countsByYear W31236997222021 @default.
- W3123699722 countsByYear W31236997222022 @default.
- W3123699722 countsByYear W31236997222023 @default.
- W3123699722 crossrefType "journal-article" @default.
- W3123699722 hasAuthorship W3123699722A5016639142 @default.
- W3123699722 hasAuthorship W3123699722A5061456829 @default.
- W3123699722 hasAuthorship W3123699722A5078420686 @default.
- W3123699722 hasBestOaLocation W31236997221 @default.
- W3123699722 hasConcept C111919701 @default.
- W3123699722 hasConcept C114466953 @default.
- W3123699722 hasConcept C118505674 @default.
- W3123699722 hasConcept C119857082 @default.
- W3123699722 hasConcept C132525143 @default.
- W3123699722 hasConcept C153180895 @default.
- W3123699722 hasConcept C154945302 @default.
- W3123699722 hasConcept C199360897 @default.
- W3123699722 hasConcept C31601959 @default.
- W3123699722 hasConcept C41008148 @default.
- W3123699722 hasConcept C59404180 @default.
- W3123699722 hasConcept C80444323 @default.
- W3123699722 hasConcept C81363708 @default.
- W3123699722 hasConceptScore W3123699722C111919701 @default.
- W3123699722 hasConceptScore W3123699722C114466953 @default.
- W3123699722 hasConceptScore W3123699722C118505674 @default.
- W3123699722 hasConceptScore W3123699722C119857082 @default.
- W3123699722 hasConceptScore W3123699722C132525143 @default.
- W3123699722 hasConceptScore W3123699722C153180895 @default.
- W3123699722 hasConceptScore W3123699722C154945302 @default.
- W3123699722 hasConceptScore W3123699722C199360897 @default.
- W3123699722 hasConceptScore W3123699722C31601959 @default.
- W3123699722 hasConceptScore W3123699722C41008148 @default.
- W3123699722 hasConceptScore W3123699722C59404180 @default.
- W3123699722 hasConceptScore W3123699722C80444323 @default.
- W3123699722 hasConceptScore W3123699722C81363708 @default.
- W3123699722 hasLocation W31236997221 @default.
- W3123699722 hasLocation W31236997222 @default.
- W3123699722 hasOpenAccess W3123699722 @default.
- W3123699722 hasPrimaryLocation W31236997221 @default.
- W3123699722 hasRelatedWork W2175746458 @default.
- W3123699722 hasRelatedWork W2613736958 @default.
- W3123699722 hasRelatedWork W2732542196 @default.
- W3123699722 hasRelatedWork W2760085659 @default.
- W3123699722 hasRelatedWork W2883200793 @default.
- W3123699722 hasRelatedWork W3027997911 @default.
- W3123699722 hasRelatedWork W3093612317 @default.
- W3123699722 hasRelatedWork W3203877373 @default.
- W3123699722 hasRelatedWork W4287776258 @default.
- W3123699722 hasRelatedWork W564581980 @default.
- W3123699722 hasVolume "9" @default.
- W3123699722 isParatext "false" @default.
- W3123699722 isRetracted "false" @default.
- W3123699722 magId "3123699722" @default.
- W3123699722 workType "article" @default.