Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123753481> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W3123753481 endingPage "244" @default.
- W3123753481 startingPage "227" @default.
- W3123753481 abstract "Over the past 15 years, there has been a significant change in the patterns towards deregulation and restructuring of the power industry with reduced electricity price. Therefore, this would encourage to forecast the electricity price in the deregulated power market with accurate model such that the generating companies are benefitted. The aim of this topic is to predict the electricity price, 24 hours in advance, on a day-head basis. Effectively, forecasting energy prices has useful applications, such as maximizing energy storage and allowing building flexibility on the demand side. Nowadays, deep learning methods like CNN (convolutional neural network) are used having image data. However, the RNN (recurrent neural network) and the type of RNN, namely LSTM (long short-term memory), are chosen as price forecaster. In this work, hourly electricity prices are collected from Nordic pool 2013–2019 data for price forecasting. For the case study, exogenous variables such as day of the week, hours of the day, temperature, oil prices, natural gas prices, coal prices, and historical price are considered. The upcoming 24-hour prices is predicted recursively. For validation of the pricing results, mean absolute percentage error (MAPE) and root mean square error (RMSE) are considered for the forecasting accuracy." @default.
- W3123753481 created "2021-02-01" @default.
- W3123753481 creator A5066635796 @default.
- W3123753481 creator A5086227404 @default.
- W3123753481 date "2021-02-17" @default.
- W3123753481 modified "2023-09-26" @default.
- W3123753481 title "Day-Ahead Electricity Price Forecasting for Efficient Utility Operation Using Deep Neural Network Approach" @default.
- W3123753481 cites W2011278703 @default.
- W3123753481 doi "https://doi.org/10.1201/9781003097723-14" @default.
- W3123753481 hasPublicationYear "2021" @default.
- W3123753481 type Work @default.
- W3123753481 sameAs 3123753481 @default.
- W3123753481 citedByCount "0" @default.
- W3123753481 crossrefType "book-chapter" @default.
- W3123753481 hasAuthorship W3123753481A5066635796 @default.
- W3123753481 hasAuthorship W3123753481A5086227404 @default.
- W3123753481 hasConcept C119599485 @default.
- W3123753481 hasConcept C127413603 @default.
- W3123753481 hasConcept C154945302 @default.
- W3123753481 hasConcept C206658404 @default.
- W3123753481 hasConcept C2781104810 @default.
- W3123753481 hasConcept C2983129042 @default.
- W3123753481 hasConcept C41008148 @default.
- W3123753481 hasConcept C42475967 @default.
- W3123753481 hasConcept C50644808 @default.
- W3123753481 hasConceptScore W3123753481C119599485 @default.
- W3123753481 hasConceptScore W3123753481C127413603 @default.
- W3123753481 hasConceptScore W3123753481C154945302 @default.
- W3123753481 hasConceptScore W3123753481C206658404 @default.
- W3123753481 hasConceptScore W3123753481C2781104810 @default.
- W3123753481 hasConceptScore W3123753481C2983129042 @default.
- W3123753481 hasConceptScore W3123753481C41008148 @default.
- W3123753481 hasConceptScore W3123753481C42475967 @default.
- W3123753481 hasConceptScore W3123753481C50644808 @default.
- W3123753481 hasLocation W31237534811 @default.
- W3123753481 hasOpenAccess W3123753481 @default.
- W3123753481 hasPrimaryLocation W31237534811 @default.
- W3123753481 hasRelatedWork W136882790 @default.
- W3123753481 hasRelatedWork W2347295811 @default.
- W3123753481 hasRelatedWork W2349982052 @default.
- W3123753481 hasRelatedWork W2369447767 @default.
- W3123753481 hasRelatedWork W2387245157 @default.
- W3123753481 hasRelatedWork W2390042623 @default.
- W3123753481 hasRelatedWork W2883617008 @default.
- W3123753481 hasRelatedWork W3091079540 @default.
- W3123753481 hasRelatedWork W3117692917 @default.
- W3123753481 hasRelatedWork W4317382658 @default.
- W3123753481 isParatext "false" @default.
- W3123753481 isRetracted "false" @default.
- W3123753481 magId "3123753481" @default.
- W3123753481 workType "book-chapter" @default.